Independent Component Analyses, Compressive Sampling, Large Data Analyses (LDA), Neural Networks, Biosystems, and Nanoengineering XIII

Harold H. Szu
Liyi Dai
Yufeng Zheng
Editors

23–24 April 2015
Baltimore, Maryland, United States

Sponsored and Published by
SPIE
Contents

<table>
<thead>
<tr>
<th>BIOMEDICAL WELLNESS APPLICATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>9496 02</td>
</tr>
<tr>
<td>9496 04</td>
</tr>
<tr>
<td>9496 05</td>
</tr>
<tr>
<td>9496 06</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SYSTEM BIOLOGY</th>
</tr>
</thead>
<tbody>
<tr>
<td>9496 07</td>
</tr>
<tr>
<td>9496 08</td>
</tr>
<tr>
<td>9496 09</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LEARNING THEORY AND APPLICATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>9496 0A</td>
</tr>
<tr>
<td>9496 0B</td>
</tr>
<tr>
<td>9496 0C</td>
</tr>
<tr>
<td>9496 0D</td>
</tr>
<tr>
<td>9496 0E</td>
</tr>
</tbody>
</table>
SMART SENSOR SYSTEMS, MINIATURIZATION, AND APPLICATIONS

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>9496 0F</td>
<td>Hypothesis on human eye perceiving optical spectrum rather than an image [9496-13]</td>
</tr>
<tr>
<td>9496 0G</td>
<td>Optical display for radar sensing [9496-14]</td>
</tr>
<tr>
<td>9496 0H</td>
<td>Selective-imaging camera [9496-15]</td>
</tr>
</tbody>
</table>

UNSUPERVISED LEARNING AND ICA

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>9496 0J</td>
<td>VoIP attacks detection engine based on neural network [9496-17]</td>
</tr>
<tr>
<td>9496 0K</td>
<td>Thermal image enhancement construct for seeing through obscurants [9496-18]</td>
</tr>
<tr>
<td>9496 0L</td>
<td>Auxiliary function approach to independent component analysis and independent vector analysis [9496-19]</td>
</tr>
<tr>
<td>9496 0M</td>
<td>How do artificial neural networks (ANNs) compare to partial least squares (PLS) for spectral interference correction in optical emission spectrometry? [9496-20]</td>
</tr>
<tr>
<td>9496 0N</td>
<td>Bio-mining for biomarkers with a multi-resolution block chain [9496-21]</td>
</tr>
</tbody>
</table>

SYSTEM BIOLOGY PIONEER AWARD

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>9496 0P</td>
<td>Quantitative real-time analysis of collective cancer invasion and dissemination (Invited Paper) [9496-32]</td>
</tr>
</tbody>
</table>

LEADERSHIP AWARD AND SMART BRAIN COMPUTER INTERFACE

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>9496 0R</td>
<td>Computational intelligence from AI to BI and NI (Invited Paper) [9496-36]</td>
</tr>
<tr>
<td>9496 0S</td>
<td>Spatially revolved high density electroencephalography (Invited Paper) [9496-28]</td>
</tr>
<tr>
<td>9496 0T</td>
<td>Hardware enhance of brain computer interfaces (Invited Paper) [9496-27]</td>
</tr>
<tr>
<td>9496 0U</td>
<td>Simulated annealing model of acupuncture (Invited Paper) [9496-29]</td>
</tr>
</tbody>
</table>

POSTER SESSION

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>9496 0V</td>
<td>Detection of cardiac activity changes from human speech [9496-22]</td>
</tr>
<tr>
<td>9496 0W</td>
<td>FPGA-based real-time blind source separation with principal component analysis [9496-23]</td>
</tr>
<tr>
<td>9496 0X</td>
<td>Independent component analysis algorithm FPGA design to perform real-time blind source separation [9496-24]</td>
</tr>
</tbody>
</table>
Authors

Numbers in the index correspond to the last two digits of the six-digit citation identifier (CID) article numbering system used in Proceedings of SPIE. The first four digits reflect the volume number. Base 36 numbering is employed for the last two digits and indicates the order of articles within the volume. Numbers start with 00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 0A, 0B...0Z, followed by 10-1Z, 20-2Z, etc.

Abbott, A. Lynn, 0K
Barbu, Adrian, 05, 08
Botella, Guillermo, 0X
Burgeth, Bernhard, 05
Cha, Jee H., 0H, 0K
Chen, Yuechen, 0S, 0T
Chu, Henry, 0D
Chu, Kai-Dee, 0G
Cissel, Marty, 04
Doi, Liyi, 0E
Dillard, John T., 0G
Ekedebe, Nnanna, 0B
Ewald, Andrew J., 0P
Fratte, Daniel, 0B
Frenchi, Christopher, 0N
Gu, Xixi, 0S, 0T
Guo, Ran, 0S, 0T
Hoekstra, Philip, 0G
Hoffmann, Sebastian, 0S
Hossack, John A., 06
Hsieh, Minder, 0G
Hsu, Charles, 0G, 0H
Ikonomidou, Vasiliki N., 02, 04
Jenkins, Jeffrey, 0C, 0N
Ji, Zhengping, 0A
Karanassios, V., 0M
Kaur, Balvinder, 02, 04
Kleefeld, Andreas, 0S
Kopf, Jarad, 0N
Krapels, Keith A., 0G, 0H
Krzwicki, Alan T., 0G
Landa, Joseph, 0G, 0H
Larsen, Louis V., 0G
Lespinats, Sylvain, 07
Li, Z., 0M
Lobbes, Marc, 0S
Lu, Chao, 0B
Luthra, Megha, 02, 04
Maren, Alianna J., 09
Meilic, Miralem, 0V
Meyer-Bäse, Anke, 05, 07, 08, 0X
Meyer-Bäse, Uwe, 05, 07, 0W, 0X
Mikulec, Martin, 0V
Moses, Sophia, 02, 04
Moulema, Paul, 0B
Odom, Crispin, 0X
Ono, Nobutaka, 0L
Ovsianikov, Ilia, 0A
Partila, Pavol, 0V
Pinker-Domenig, Katja, 07, 08
Pratt, Michael, 0D
Reynolds, Joseph P., 0K
Safark, Jakub, 0J
Shang, Charles, 0U
Shi, Lilong, 0A
Singh, Anurag, 0D
Slahtka, Jiří, 0J
Sweet, Charles, 0C
Szü, Harold H., 09, 0C, 0F, 0G, 0H, 0N, 0S, 0T, 0U
Tarbox, Elizabeth, 04
Tovarek, Jaromir, 0V
Tran, Binh Q., 0G, 0N
Tran, Nhien, 04
Vaidya, Misha, 04
van Bergem, Rutger, 0C
Vietsch, Eveline, 0C
Voznak, Miroslav, 0V
Wang, Yibing, 0A
Wardlaw, Michael, 0G
Werbos, Paul J., 0R
Willey, Jefferson, 0G
Wilson, Matthew, 0W
Wu, Jerry, 0S, 0T
Yu, Wei, 0B
Zhang, Qiang, 0A
Zhang, X., 0M
Zheng, Yufeng, 0F
Conference Committee

Symposium Chair

Wolfgang Schade, Clausthal University of Technology (Germany) and Fraunhofer Heinrich-Hertz Institute (Germany)

Symposium Co-chair

Ming C. Wu, University of California, Berkeley (United States)

Conference Chair

Harold H. Szu, U.S. Army Research Office (United States)

Conference Co-chairs

Liyi Dai, U.S. Army Research Office (United States)

Yufeng Zheng, Alcorn State University (United States)

Conference Program Committee

Shun-ichi Amari, RIKEN (Japan)

Richard G. Baraniuk, Rice University (United States)

John J. Benedetto, University of Maryland, College Park (United States)

Henry Chu, University of Louisiana at Lafayette (United States)

Ronald R. Coifman, Yale University (United States)

John Daugman, University of Cambridge (United Kingdom)

David Donoho, Stanford University (United States)

Ronald G. Driggers, St. Johns Optical Systems (United States)

Jide Familoni, U.S. Army Night Vision & Electronic Sensors Directorate (United States)

Fredric M. Ham, Florida Institute of Technology (United States)

Yutaka Hata, University of Hyogo (Japan)

Charles C. Hsu, Trident Systems Inc. (United States)

Tzyy-Ping Jung, University of California, San Diego (United States)

Marc W. Kirschner, Harvard Medical School (United States)

Keith A. Krapels, U.S. Army Night Vision & Electronic Sensors Directorate (United States)

Horacio Lamela, Universidad Carlos III de Madrid (Spain)

Joseph S. Landa, BriarTek, Inc. (United States)

Douglas A. Lauffenburger, Massachusetts Institute of Technology (United States)

Soo-Young Lee, KAIST (Korea, Republic of)
Kevin W. Lyons, National Institute of Standards and Technology (United States)
Anke D. Meyer-Bäse, The Florida State University (United States)
Uwe Meyer- Bäse, The Florida State University (United States)
Francesco Carlo Morabito, Università Mediterranea di Reggio Calabria (Italy)
Hiroshi Nakajima, OMRON Corporation (Japan)
Hyung-Min Park, Sogang University (Korea, Republic of)
Klitt C. Reinhardt, Air Force Office of Scientific Research (United States)
Zuowei Shen, National University of Singapore (Singapore)
Metin Sitti, Carnegie Mellon University (United States)
Jan-Olov Stromberg, Royal Institute of Technology (Sweden)
John Tangney, Office of Naval Research (United States)
Emmanuel Vincent, IRISA / INRIA Rennes (France)
Nadarajen A. Vydelingum, National Institutes of Health (United States)
Lipo Wang, Nanyang Technological University (Singapore)
Olaf Wolkenhauer, Universität Rostock (Germany)
Donald C. Wunsch II, Missouri University of Science and Technology (United States)
Ning Xi, Michigan State University (United States)
Takeshi Yamakawa, Fuzzy Logic Systems Institute (Japan)
Yiping Zhao, The University of Georgia (United States)
Xiaowei Zhuang, Harvard University (United States)
Introduction

This year’s exciting conference Proceedings features frontier sensor and technology research in human science components: independent component analyses, compressive sampling, large data analyses (LDA), neural networks, biosystems, and nanoengineering. This research is increasing important as the baby-boomer generation continues to age. These components are increased yearly according to the community’s need. For example, the Adaptive Wavelet Pioneer Award was folded into a new and emerging category called Large Data Analysis which is slightly different in computational intelligence (CI) from a brute force law enforcement need of big data analyses. Through the tremendous contributions from authors, presenters, and attendees, new ideas and technologies can be carried to the world and serve the aging global village.

Historically, our section has been part of the SPIE Defense, Security and Sensing Symposium, and is now highlighted in the Sensing Technology + Applications (STA) section. These conference Proceedings serve as a wonderful reflection of the work presented this year, but nothing can replace physically attending and interacting with our talented scientists and investigators. The Pioneer Awardees for this year were selected by past recipients, and the nomination and selection committee was chaired by the recipients listed below. The 2015 recipients and 2014 former recipients will serve as the nomination and selection committee chair and co-chair for the next year’s 2016 conference:

- Large Data Analysis Pioneer Award: Ronald Coifman, Yale University (United States), “Automatic organization and signal processing of databases”
- Biomedical Wellness Pioneer Award: John Hossack, University of Virginia (United States), “Catheter ultrasound for cross-sectional imaging and drug delivery to vessel wall”
- Unsupervised Learning ICA Pioneer Award: Nobutaka Ono, National Institute of Informatics (Japan), “Auxiliary function approach to independent component analysis and independent vector analysis”
- Compressive Sampling Pioneer Award: Joel Tropp, California Institute of Technology (United States), “Sampling theorems for structured signals”
- System Biology Pioneer Award: Andrew Ewald, Johns Hopkins University (United States), “Quantitative real-time analysis of collective cancer invasion and dissemination”
- Nanoengineering Pioneer Award: Michael McAlpine, Princeton University (United States), “3D printed bionic nano-material”
- Leadership Award: Paul Werbos, The University of Memphis (United States), “Computational Intelligence from AI to BI and NI.”
We thank you for making 2015 a successful and memorable year, and encourage past, present, and future associates to participate in the knowledge discovery and sharing through SPIE. A tangible measure of the success of annual conferences is how much collaboration results from the former conferences. Thus, it is the duty and obligation of Chairs to facilitate dialogue among presenters and audiences.

www.ica-wavelet.org

Harold H. Szu
Liyi Dai
Yufeng Zheng