Contents

<table>
<thead>
<tr>
<th>ix</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>xiii</td>
<td>Conference Committee</td>
</tr>
</tbody>
</table>

TOWARD (OR IN) THE QUANTUM LIMIT OF OPTO-MECHANICS

9164 03	Cavity cooling a trapped nanosphere in vacuum [9164-2]
9164 04	Cooling the centre-of-mass motion of a silica microsphere [9164-3]
9164 05	Parametric stabilization and cooling of microparticles in a quadrupole ion trap [9164-4]
9164 07	On-chip optical trapping for atomic applications [9164-6]

FOUNDATIONS OF THE ELECTROMAGNETIC THEORY OF FORCE AND MOMENTUM

| 9164 0A | Momentum measurements with holographic optical tweezers for exploring force detection capabilities on irregular samples [9164-9] |
| 9164 0B | Electromagnetic force and torque in Lorentz and Einstein-Laub formulations [9164-10] |

BEAM SHAPING AND ABERRATION/WAVEFRONT CORRECTION

| 9164 0G | Spontaneous revolution of micro-swimmers in a spherically aberrated optical trap [9164-92] |
| 9164 0I | Engineering particle trajectories in microfluidic flows using speckle light fields [9164-15] |

HELICITY AND OPTICAL ANGULAR MOMENTUM

9164 0J	Observation of the rotational Doppler effect from an optically trapped micro-particle [9164-16]
9164 0K	Optical trapping with a perfect vortex beam [9164-17]
9164 0L	Behavior of oblate spheroidal microparticles in a tightly focused optical vortex beam [9164-18]
9164 0M	Interesting manifestations of spin orbit interaction and spin Hall shift of light in an optical trap [9164-19]
OPTICALLY DRIVEN MICRORHEOLOGY AND MECHANICAL PROPERTIES

9164 0O Measurement of interparticle force between nematic colloids [9164-21]

9164 0R Temporal response of biological cells to high-frequency optical jumping and vibrating tweezers [9164-26]

USING THE PHOTONIC TOOLBOX TO STUDY CELLS AND THEIR ORGANELLES

9164 0S Local probing and stimulation of neuronal cells by optical manipulation (Invited Paper) [9164-27]

9164 0U Force measurements with optical tweezers inside living cells [9164-29]

9164 0Y The Pocketscope: a spatial light modulator based epi-fluorescence microscope for optogenetics [9164-33]

ENHANCED SENSITIVITY AND RESOLUTION OF OPTICAL FORCE ACTUATORS

9164 10 Quad stereo-microscopy [9164-35]

9164 11 Enabling accurate photodiode detection of multiple optical traps by spatial filtering [9164-36]

9164 12 A force measurement instrument for optical tweezers based on the detection of light momentum changes [9164-37]

9164 13 Optical tweezers escape forces [9164-38]

9164 14 A new technique for high sensitive detection of rotational motion in optical tweezers by a differential measurement of backscattered intensity [9164-39]

9164 15 Optical tweezers calibration with Bayesian inference (Invited Paper) [9164-40]

SINGLE-MOLECULE MANIPULATION AND STUDY

9164 18 Optical tweezers for free-solution label-free single biomolecule studies [9164-43]

PHOTONIC DEVICES FOR OPTICALLY INDUCED FORCES

9164 1E Inducing forced and auto oscillations in one-dimensional photonic crystals with light [9164-49]
Near-Field Micromanipulation, Plasmonic, and Nanoparticle Trapping

<table>
<thead>
<tr>
<th>Paper Number</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>9164-1G</td>
<td>Optical trapping of nanoscale plasmonic optical lattice in microfluidic environments [9164-51]</td>
</tr>
<tr>
<td>9164-1H</td>
<td>Promoting optofluidic actuation of microparticles with plasmonic nanoparticles [9164-52]</td>
</tr>
<tr>
<td>9164-1I</td>
<td>Characterisation of Au nanorod dynamics in optical tweezers via localised surface plasmon resonance spectroscopy [9164-53]</td>
</tr>
<tr>
<td>9164-1L</td>
<td>Anomalous dynamic behavior of optically trapped high aspect ratio nanowires [9164-56]</td>
</tr>
<tr>
<td>9164-1M</td>
<td>Optical trapping with pillar bowtie nanoantennas [9164-57]</td>
</tr>
</tbody>
</table>

Studies of Active Swimmers/Hydrodynamics

<table>
<thead>
<tr>
<th>Paper Number</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>9164-1N</td>
<td>Active matter transport on complex substrates [9164-58]</td>
</tr>
<tr>
<td>9164-1P</td>
<td>Collective behavior of the optically driven particles on a circular path [9164-60]</td>
</tr>
<tr>
<td>9164-1Q</td>
<td>Investigating hydrodynamic synchronisation using holographic optical tweezers (Invited Paper) [9164-61]</td>
</tr>
</tbody>
</table>

Statistical Mechanics of Small Systems

<table>
<thead>
<tr>
<th>Paper Number</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>9164-1V</td>
<td>Einstein’s osmotic equilibrium of colloidal suspensions in conservative force fields (Invited Paper) [9164-67]</td>
</tr>
</tbody>
</table>

Optical Manipulation of Matter Through Gaseous Media

<table>
<thead>
<tr>
<th>Paper Number</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>9164-1W</td>
<td>Micro-rheology and interparticle interactions in aerosols probed with optical tweezers [9164-68]</td>
</tr>
<tr>
<td>9164-1X</td>
<td>The study of thin films on solid aerosol particles using optical trapping and Mie scattering from a broadband white LED [9164-69]</td>
</tr>
<tr>
<td>9164-1Y</td>
<td>Aerosol optical chromatography and measurements of light extinction by single particles [9164-70]</td>
</tr>
</tbody>
</table>

Optical Sorting, Optical Lab-On-A-Chip, and Microfluidics

<table>
<thead>
<tr>
<th>Paper Number</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>9164-20</td>
<td>Ordering of colloids with competing interactions on quasi-one-dimensional periodic substrates [9164-73]</td>
</tr>
<tr>
<td>9164-21</td>
<td>Hybrid optical and acoustic force based sorting [9164-74]</td>
</tr>
<tr>
<td>9164-25</td>
<td>Optoelectronic cell lysis [9164-78]</td>
</tr>
</tbody>
</table>
Pulsed laser activated cell sorter (PLACS) for high-throughput fluorescent mammalian cell sorting

OPTICALLY BOUND MATTER

Waveguides in colloidal nanosuspensions

OPTOFLUIDICS AND OPTICALLY SHAPED STRUCTURES

Manipulation of particles by laser tweezers-induced gradient of order in the nematic liquid crystal

The break-up dynamics of liquid threads revealed by laser radiation pressure and optocapillarity

OPTICALLY MANIPULATED ROBOTICS AND NOVEL SAMPLES

Optical tweezers as manufacturing and characterization tool in microfluidics

THE FINAL SESSION

Optical trapping of isolated mammalian chromosomes

POSTER SESSION

Micro-particles self-arrangement in shapeable counter-propagating beams

Rapid fabrication of polymeric micro lenses for optical fiber trapping and beam shaping

Generation of shock waves in a medium with absorbing particles

Viscoelasticity measurements inside liposomes

Natural user interface as a supplement of the holographic Raman tweezers

Simulation of active Brownian particles in optical potentials

Multiplexed spectroscopy with holographic optical tweezers

Numeric modeling approximation of the fluid dynamics in an optical fiber trap

Holographic generation of vector beams with upper-bound diffraction efficiency

Studying biofuel aerosol evaporation rates with single particle manipulation
Optical nanofiber integrated into an optical tweezers for particle manipulation and in-situ fiber probing [9164-109]

Towards polarization-sensitive trapping of nanoparticles in nanoring apertures [9164-110]

Multiscale manipulation of microbubbles employing simultaneous optical and acoustical trapping [9164-111]

Micro- and nano-particle trapping using fibered optical nano-tweezers [9164-112]

Holographic optical tweezers: microassembling of shape-complementary 2PP building blocks [9164-115]

Tunable WGM resonators from optically trapped dye doped liquid crystal emulsion droplets [9164-116]

Force dependence of phagosome trafficking in retinal pigment epithelial cells [9164-117]

Anomalous behavior of a three-dimensionally optically trapped super-paramagnetic particle [9164-118]

Beam-splitting waveguides induced in nanocolloids [9164-122]

Generation of hollow optical beams for optical manipulation [9164-124]

Plasmonic Archimedes spiral for selective optical trapping and rotation of optically isotropic particles [9164-125]

Trapping and manipulation of microparticles using Rayleigh convection generated by laser-induced heating of an absorbing thin film [9164-126]

Various superpositions of Bessel beams for capture and controlled rotation of microobjects [9164-127]
Authors

Numbers in the index correspond to the last two digits of the six-digit citation identifier (CID) article numbering system used in Proceedings of SPIE. The first four digits reflect the volume number. Base 36 numbering is employed for the last two digits and indicates the order of articles within the volume. Numbers start with 00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 0A, 0B...0Z, followed by 10-1Z, 20-2Z, etc.

Aas, Mehdi, 34
Al-Balushi, Ahmed A., 18
Alexandrou, Antigoni, 15
Altman, David, 35
Anderson, Dana, 07
Andres-Arroyo, Ana, 1I, 1L
Angelsky, Oleg V., 2N
Angstmann, C., 1L
Antalik, Marian, 2P
Arita, Yoshihiko, 0K
Arroyo-Carrasco, Maximino Luis, 2V
Arzola, Alejandro V., 0L
Aumann, Andreas, 33
Banerjee, Ayan, 0G, 0M, 14
Barker, P. F., 03, 04
Barnett, S. M., 0J
Beltran-Perez, G., 3C
Bera, Sudipta K., 14
Berna, Silvije, 2P
Bens, Michael W., 13, 2I
Besaga, Vira R., 2N
Bhuiya, Abdul M., 1M
Box, Stuart, 1Q
Brambilla-Tamayo, Emma C., 39
Brodie, Graham W., 21
Bruot, Nicolas, 1Q
Brzobohatý, Oto, 2L, 36
Bui, Ann A. M., 13, 2I
Burghin, Julien, 1H
Cai, Chen, 1W
Catalá, Frederic, 0A
Cerecedo Nuñez, H., H., 2U
Chen, Hao, 1M
Chen, Mingzhou, 0K
Chen, Yue, 26
Chiou, Pei-Yu, 26
Chung, Aram, 26
Chvátal, Lukáš, 0L, 2L
Cibula, Matthew A., 2T
Cicuta, Pietro, 1Q
Clark, Alan D., 25
Cochran, Sondy, 2I
Cojoc, Dan, 0S
Colas des Francs, Gérard, 30
Coleman, Victoria, 11
Cooper, Jonathan M., 25
Corsetti, S., 2W
Cotterrell, Michael L., 1Y
Cruz, Gladys, 2I
Daniel, Rebekah, 35
Dantelle, Géraldine, 30
Debono, Luke, 1Q
Decombe, Jean-Baptiste, 30
Delville, Jean-Pierre, 1H, 2C
Demore, Christine E. M., 21
Dholakia, Kishan, 0K
Di Carlo, Dino, 26
Ding, Qing, 1M
Dof, Rafael, 1E
Duggan, Janet, 07
Dutta Gupta, Subhasish, 0M
Ecoffet, C., 2M
Farkas, Daniel, 07
Farré, Anna, 0A, 0U, 12
Faubert, Jocelyn, 1E
Fick, Jochen, 30
Fiszman, Nicolas, 15
Flores-Flores, E., 3C
Fontes, P. G. Z., 03
Frawley, Mary C., 2X
Fu, Jinxin, 1V
Fury, C., 2Z
Gacoin, Thierry, 30
Ganchevskaya, Sofia V., 3D
Gao, Q., 1L
Ghadori, R., 2F
Ghosh, Nirmalya, 0M
Gibson, Graham M., 0J, 10
Gibson, Lachlan, 2O
Gigan, Sylvain, 0L, 2S
Gordon, Reuven, 18
Guerreiro, A., 2M
Guévicher, E. L., 2F
Gusachenko, Ivan, 2X, 2Y
Hanna, Simon, 1Q
Hay, Rebecca F., 10
Henry, B., 1L
Hernández Zavala, J., E., 02
Hernández-Cordero, Juan, 29
Huang, Chen-Bin, 3B
Huang, Jer-Shing, 1G, 3B
Huang, Serge, 30
Hung, Chia-Chun, 1G
Izaki, Kuniyoshi, 0O
Jagadish, C., 1L
Jákl, Petr, 0L, 2P, 36

ix
Ježek, Jan, 34, 36
Jones, P. H., 22
Jones, Stephanie H., 1X
Jorge, P. A. S., 2M
Kane, Bruce E., 05
Karika, Jan, 2L, 2P
Kellay, Hamid, 2C
Kemp, Scott, 1I
Kesa, Peter, 2P
Khalifzadeh, Nima, 13, 2I
Kimura, Yasuyuki, 0O, 1P
King, Martin D., 1X
Kirenyak, Andrew P., 2N
Koll, Andrew T., 35
Kota, Kurjil, 1Q
Kotnala, Abhay, 18
Kotta, Sarah Isabelle, 2F, 33
Kung, Yu-Chun, 26
Lavery, M. P. J., 0J
Lee, Michael P., 0J, 10
Le Gall, Antoine, 15
Li, Y. Lia, 04
Linnenberger, Anna, 0Y
Lokar, Žiga, 2B
López-Peña, Luis A., 29, 39
Lugo, J. E., 1E
MacDonald, Michael P., 21
Maksimyak, Andrew P., 2N
Maksimyak, Peter P., 2N
Mansuripur, Masud, 0B
Marsá, Ferran, 0A, 12
Martín-Badosa, Estela, 0A, 0U
Mas, Josep, 0U
Mason, Bernard J., 1Y
Masson, Jean-Baptiste, 15
Matern, Manuel, 33
Mavrogordatos, T., 03
Mazilu, Michael, 0K
McDermott, D., 20
McGloin, D., 2W
McIntyre, David H., 2T
Memoli, G., 22
Méndez, Guadalupe, 2V
Miles, Mervyn, 1Q
Miles, R. E. H., 2W
Millen, J., 03, 04
Mondal, Argha, 0G, 14
Monteiro, T. S., 03
Montes-Usategui, Mario, 0A, 0U, 12
Morozov, Andrey A., 3D
Mušević, Igor, 2B
Nagornykh, Pavel, 05
Neale, Steven L., 25, 3C
Nic Chormaic, Síle, 2X, 2Y
Niemenen, Timo A., 13, 2I, 2O
Odershede, Lene B., 11
Okubo, Shogo, 1P
Oliva, A., 2M
Olson Reichhardt, C. J., 1N, 20
O'Mahoney, Paul, 21
Om-Ewing, Andrew J., 1Y
Ostendorf, Andreas, 2F, 33
Osterman, Natan, 2B
Ott, Dino, 11
Ou-Yang, H. Daniel, 1V, 2L
Padgett, Miles J., 0J, 10
Padilla Sosa, P., 2U
Padilla Sosa, P., 2U
Páez López, Rafael, 2V
Perez, Maximilian A., 07
Perronnet, Karen, 15
Peterka, Darty S., 0Y
Petit, Julien, 2C
Phillips, David B., 0J, 10, 1Q
Pilat, Zdeněk, 34
Piwonka, I. O., 1L
Portfirev, Alexey P., 3A, 3D
Power, Rory M., 1W
Preese, Daryl, 2O
Preston, Thomas C., 1Y
Queirós, R. B., 2M
Quirin, Sean, 0Y
Ramirez-San-Juan, J. C., 3C
Ramos-Garcia, Ruben, 2V, 3C
Ray, D., 1N
Reboud, Julien, 25
Reece, Peter, J., 1I, 1L
Reichhardt, C., 1N, 20
Reid, Jonathan P., 1W, 1Y, 2W
Reilani, N. Noder, 11
Richly, Maximilian U., 15
Riviére, David, 2C
Robert de Saint Vincent, Matthieu, 2C
Rocha, Yesenia, 2I
Rodrigues Ribeiro, R. S., 2M
Roxworthy, Brian J., 1M
Roy, Basudev, 0G, 0M, 14
Roy, Soumyajit, 0G
Rubinsztein-Dunlop, Halina, 13, 2I, 2O
Rykov, Mikhail A., 3D
Salazar-Romero, Yadira, 29
Salim, Evan, 07
Sanchez, Noemí, 1E
Sancho-Parramon, Jordi, 0U
Sergides, Marios, 2Y
Šerov, Mojmir, 0L, 2P, 34
Sheng, Yunlong, 0R
Shibata, Shuhei, 1P
Sih, Satyabrata, 1H
Sil, Martin, 36
Šimpat, Stephen H., 0J, 1Q, 1W
Skarabat, Miha, 2B
Skidanov, Roman V., 3A, 3D
Soppera, O., 2M
Spalding, Gabriel C., 21
Speirits, F. C., 0J
Stilgoe, Alexander B., 13, 2I
Tan, H. H., 1L
Teitell, Michael A., 26
Terborg, Roland A., 29, 39
Toe, Wen Jun, 1I, 1L
Tomori, Zoltan, 2P
Torres, Juan P., 29, 39
Torres-Hurtado, S. A., 3C
Toussaint, Kimani C., Jr., 1M
Truong, Viet Giang, 2X, 2Y
Tsai, Wei-Yi, 3B
Türkcan, Silvan, 15
Valdívía-Valero, Francisco J., 30
Velasco-Gutiérrez, Cristian R., 39
Vigueras Zuñiga, M. O., 2U
Volke-Sepúlveda, K., 29, 39
Volpe, Giorgio, 0I, 2S
Volpe, Giovanni, 0I, 2S
Wang, Fan, 1I
Wang, Han, 21
Ward, Andrew D., 1X
Westbrook, Nathalie, 15
Witte, Christian, 25
Wright, Ewan M., 0K
Wu, Ting-Hsiang, 26
Yang, Ya-Tang, 1G
Yu, Lingyao, 0R
Yuste, Rafael, 0Y
Zemánek, Pavel, 0L, 2L, 2P, 34, 36
Zhang, Shu, 2O
Zyla, Gordon, 33
Conference Committee

Symposium Chairs

Satoshi Kawata, Osaka University (Japan)
Manijeh Razeghi, Northwestern University (United States)

Symposium Co-chairs

David L. Andrews, University of East Anglia Norwich (United Kingdom)
James G. Grote, Air Force Research Laboratories (United States)

Conference Chairs

Kishan Dholakia, University of St. Andrews (United Kingdom)
Gabriel C. Spalding, Illinois Wesleyan University (United States)

Session Chairs

1 Toward (Or In) the Quantum Limit of Opto-Mechanics
 Michael Mazilu, University of St. Andrews (United Kingdom)

2 Foundations of the Electromagnetic Theory of Force and Momentum
 Gabriel C. Spalding, Illinois Wesleyan University (United States)

3 Beam Shaping and Aberration/Wavefront Correction
 Gabriel C. Spalding, Illinois Wesleyan University (United States)

4 Helicity and Optical Angular Momentum
 Kishan Dholakia, University of St. Andrews (United Kingdom)

5 Optically Driven Microrheology and Mechanical Properties
 Jean-Pierre Delville, Université Bordeaux 1 (France)

6 Using the Photonic Toolbox to Study Cells and Their Organelles
 Michael W. Berns, University of California, San Diego (United States)

7 Enhanced Sensitivity and Resolution of Optical Force Actuators
 Giovanni S. Volpe, Bilkent University (Turkey)

8 Single-Molecule Manipulation and Study
 Kishan Dholakia, University of St. Andrews (United Kingdom)

9 Alternative Methods
 Hiroshi Masuhara, National Chiao Tung University (Taiwan)
10 Photonic Devices for Optically Induced Forces
Masud Mansuripur, College of Optical Sciences, The University of Arizona (United States)

11 Near-Field Micromanipulation, Plasmonic, and Nanoparticle Trapping
Romuald Houdré, Ecole Polytechnique Fédérale de Lausanne (Switzerland)

12 Studies of Active Swimmers/Hydrodynamics
Vernita Gordon, The University of Texas at Austin (United States)

13 Statistical Mechanics of Small Systems
Roberto Di Leonardo, Università degli Studi di Roma La Sapienza (Italy)

14 Optical Manipulation of Matter through Gaseous Media
Kishan Dholakia, University of St. Andrews (United Kingdom)

15 Optical Sorting, Optical Lab-on-a-Chip, and Microfluidics
Simon Hanna, University of Bristol (United Kingdom)

16 Optically Bound Matter
Gabriel C. Spalding, Illinois Wesleyan University (United States)

17 Optofluidics and Optically Shaped Structures
Etienne Brasselet, Université Bordeaux 1 (France)

18 Optically Manipulated Robotics and Novel Samples
Kishan Dholakia, University of St. Andrews (United Kingdom)
Gabriel C. Spalding, Illinois Wesleyan University (United States)

19 In Memory of Dmitri Petrov
Danut-Adrian Cojoc, Laboratorio Nazionale TASC (Italy)

20 The Final Session
Karen P. Volke-Sepúlveda, Universidad Nacional Autónoma de México (Mexico)