29 January 2014 Strong room-temperature ultraviolet to red excitons from inorganic organic-layered perovskites, (R-NH3)2MX4 (M=Pb2+, Sn2+, Hg2+; X=I−, Br−)
Shahab Ahmad, G. Vijaya Prakash
Author Affiliations +
Abstract
Many varieties of layered inorganic-organic (IO) perovskite of type (R-NH3 )2 MX4 (where R: organic moiety, M: divalent metal, and X: halogen) were successfully fabricated and characterized. X-ray diffraction data suggest that these inorganic and organic structures are alternatively stacked up along c -axis, where inorganic mono layers are of extended corner-shared MX6 octahedra and organic spacers are the bi-layers of organic entities. These layered perovskites show unusual room-temperature exciton absorption and photoluminescence due to the quantum and dielectric confinement-induced enhancement in the exciton binding energies. A wide spectral range of optical exciton tunability (350 to 600 nm) was observed experimentally from systematic compositional variation in (i) divalent metal ions (M=Pb2+ , Sn2+ , Hg2+), (ii) halides (X=I − and Br − ), and (iii) organic moieties (R). Specific photoluminescence features are due to the structure of the extended MX 2− 4 network and the eventual electronic band structure. The compositionally dependent photoluminescence of these IO hybrids could be useful in various photonic and optoelectronic devices.
© 2014 Society of Photo-Optical Instrumentation Engineers (SPIE) 0091-3286/2014/$25.00 © 2014 SPIE
Shahab Ahmad and G. Vijaya Prakash "Strong room-temperature ultraviolet to red excitons from inorganic organic-layered perovskites, (R-NH3)2MX4 (M=Pb2+, Sn2+, Hg2+; X=I−, Br−)," Journal of Nanophotonics 8(1), 083892 (29 January 2014). https://doi.org/10.1117/1.JNP.8.083892
Published: 29 January 2014
Lens.org Logo
CITATIONS
Cited by 23 scholarly publications and 1 patent.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Excitons

Information operations

Bromine

Lead

Tin

Thin films

Mercury

Back to Top