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ABSTRACT
As the crystalline lens ages and as cataracts develop, highly concentrated proteins in lens fiber cells undergo
rearrangements leading to substantial increases in scattered light. By exploiting a relationship between scat-
tered light and refractive index, it is shown that a rearrangement of proteins necessarily leads to increased
index as well. This change in refractive index is a second-order effect and must be quite small in most cases.
However, it offers a possible explanation for the increase in index and refractive power associated with the
development of nuclear cataract. © 1996 Society of Photo-Optical Instrumentation Engineers.
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INTRODUCTION
The crystalline lens grows throughout life and in
addition undergoes a variety of biochemical
changes as one ages. These changes include the
possibility of cataract formation leading to greatly
increased light scatter and eventually to a lens
opacity.
There are at least two well-documented sets of

conditions associated with refractive index changes
in the lens. As the lens ages it becomes thicker and
its surfaces typically develop greater curvatures.
Concomitant refractive power increases, however,
do not take place when averaged over a population.
This apparent contradiction has been called the
‘‘lens paradox’’ and has been ascribed to a small
refractive index change in one or another segment
of the lens.1–3 The biochemical basis of this index
change, however, remains under debate.
A second set of circumstances leading apparently

to an index change in the crystalline lens has some-
times been called ‘‘index myopia.’’4 An increase in
refractive power of the lens by 1 to 3 diopters has
been shown to be a precursor to nuclear sclerosis
and nuclear cataract.5 An increase in index of the
nucleus of the Gullstrand exact eye of about .005 to
.01 is sufficient to accomplish this change in power.
If the index is graded with the largest index at the
nucleus center, then a much smaller change of in-
dex achieves the same power change.
An often studied type of change occurring in the

aging and cataractous lens is the formation of pro-
tein aggregates in the cytoplasm and on the mem-
branes of the structural cells (lens fibers). The re-
fractive index of a medium is determined by the
polarizability of its constituents, i.e., the response of
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each constituent to an external electric field. If a
molecule is polarized, then it establishes a second-
ary electric field in its neighborhood affecting
nearby molecules. Therefore one expects the polar-
izability of a protein aggregate to be slightly differ-
ent than the sum of the polarizabilities of its con-
stituent molecules. Likewise one expects the
refractive index of the lens to be somewhat changed
if a substantial fraction of proteins become aggre-
gated.
The formation of protein aggregates must change

the amount and angular distribution of light scat-
tered by the lens. Therefore one might suspect that
scattered light contains information about protein
aggregation and the resulting change in refractive
index. That this is in fact the case has been shown
by van de Hulst.6 For small index fluctuations,
surely the case for the crystalline lens, the light scat-
tered in the forward direction, i.e., in the direction
of the transmitted beam, combines with the trans-
mitted wave slightly changing its phase (and mag-
nitude). This phase change is interpreted by van de
Hulst as due to a change in index of the scattering
medium.
For a medium of tenuous scatterers (small index

fluctuations), the scattered electric field at any point
in space can be expressed as an iterative series.7,8

The first term in this series has been called the
Rayleigh-Gans approximation6 (or Born approxi-
mation). The second term, considerably more com-
plex than the first, has been written in a form suit-
able for numerical evaluation.7–9 To evaluate the
effects of protein aggregation on refractive index, it
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is necessary to evaluate this second term in the for-
ward direction only. This has been done for two
scatterer geometries. In one, the light scattering en-
tities are assumed randomly positioned and ori-
ented. In the other, they are assumed to be parallel
cylinders. It is plausible that these two cases are
representative of actual light scattering processes in
the lens.10

CALCULATIONS
A linearly polarized plane wave, E0 exp(ikz), is
propagated in the direction of the positive z axis
through a medium consisting of a cloud of particles
of refractive index n in a medium of refractive in-
dex n0 . The ‘‘wave number’’ k=2p/l, and l is the
wavelength inside the medium of index n0 . The in-
cident electric field vector, E0 , is directed along the
x axis so that E0=E0x, where x is a unit vector along
the positive x axis. The total electric field surround-
ing this medium satisfies a fairly complex integro-
differential equation.7 When the particle indices dif-
fer little from the surrounding medium, the inte-
grodifferential equation can be solved by an itera-
tive series with an approximate expansion
coefficient,

a5
n2n0
2pn0

.

The scattered field, Esc(r), at position r is the electric
field remaining after subtraction of the incident
field from the total field. It can be written formally
as the iterative series

Esc~r!5aE1~r!1a2E2~r!1 . . . . (1)

Evaluation of the scattered field at distances from
the scattering medium large compared to dimen-
sions of the medium (i.e., the far field) leads to a
number of simplifications. The first term in the re-
sulting series for the scattered field, the Rayleigh-
Gans approximation, has often been used to de-
scribe light scatter by tenuous particles. It accounts
for single-scattering events. The second term ac-
counts for all double-scattering events and there-
fore takes into account interactions between polar-
izabilities at different positions in the medium.
It is the purpose of this study to evaluate the con-

tribution of scattered light to the refractive index of
a medium. Values of Esc(r) in the direction of propa-
gation of the incident light, i.e., at positions along
the positive z axis, make up the ‘‘forward scattered
light.’’ This portion of the scattered field adds to the
incident wave slightly changing both its phase and
its magnitude.6 This can be represented symboli-
cally as

exp~ ikz !→expF ikS z1L
Dm
n0

D G ,
where L is the thickness of the scattering medium.
The quantity Dm in general has both a real and
imaginary part. The real part leads to a phase
change of the transmitted light, so it must be inter-
preted as an index change of the medium due to
light scatter. The imaginary part of Dm , however,
leads to an exponential decay of the transmitted
wave. This decay is a consequence of the removal
of scattered light from the transmitted light.
Only two cases will be considered in the follow-

ing. In one, the scattering entities are randomly po-
sitioned and randomly oriented so that statistically
they can be treated as spherically symmetrical. In
the other, the scattering entities are assumed to be
infinite parallel cylinders with axes parallel to ei-
ther the x or y axis. In each of these cases, by sym-
metry, the forward scattered field must be parallel
to the incident field. If the origin of coordinates is
placed inside the scattering volume, then the far
field can be written

Esc~z!5E0
exp$ikz%

kz
S~0 !.

The forward scattering amplitude, S(0), is a scalar
quantity that, from Eq. (1), can be written
S(0)5aS1(0)1a2S2(0)+... . It is related to the re-
fractive index change Dm by6

Dm
n0

5
2p

k3V0
Re$S~0 !%, (2)

where V0 is the volume of the scattering medium.
The refractive index change, Dm , is explicitly iden-
tified with the real part of S(0) in Eq. (2). The
imaginary part of S(0) gives a term resulting in an
exponential decay of the transmitted wave due to
removal of scattered light. It will be considered
later. The scattering amplitude, S1(0), in the
Rayleigh-Gans approximation is particularly simple
because the field inside the particle is assumed to
be equal to the incident field. Then,

aS1~0 !5
n2n0
2pn0

k3Vs , (3)

where Vs is the total volume of scattering particles.
From Eq. (2), the refractive index m of the medium
is

m[n01Dm5n01~n2n0!
Vs

V0
. (4)

The right-hand side of Eq. (4) equals the mean in-
dex of medium and scattering particles. Therefore
in this Rayleigh-Gans approximation the medium
index is equal to the mean index.
Note that Eq. (4) gives no information about par-

ticle size. Such information requires going beyond
the Rayleigh-Gans approximation.
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To find the dependence of medium index on par-
ticle size, the second term, a2S2(0), must be
evaluated.7–9

S2~0 !5
k6

6p2E
2`

`

d3uG~u!
21u223ux

2

u221
, (5)

where the three-fold integral extends over all val-
ues of the components of the vector u. Also,

G~u!5U E
particles

d3r8exp$2ikr8~u1z!%U2. (6)

Here the three-fold integral is over the volume of
all scattering particles. Also z is a unit vector in the
direction of the positive z axis. The integral in Eq.
(5) is singular. It must be evaluated by making the
replacement

1
u221

5
1

u11 S P
u21

1pi D ,
where the symbol P denotes the Cauchy principal
value of the integral. Note also that S2(0) is thus
divided into real and imaginary parts. Equations (5)
and (6) allow, in principle, the evaluation of S2(0)
and the corresponding change in the medium re-
fractive index. These equations can be made more
tractable by treating the medium as a random dis-
tribution of refractive index fluctuations. Let the
random variable n(r) be the index at position r in
the scattering medium. It is convenient to define the
random variable,

h~r!5
n~r!
n̄

21.

The bar over any quantity denotes an average of
that quantity over the scattering medium. Note that
h̄50. With appropriate assumptions, the correla-
tion function,11 defined by

h2g~r!5h~r1!h~r2!

with r=r1−r2 , exists for all values of the vector r.
Note that g(0)=1 and that h2 is the variance of index
fluctuations. Also, if the index fluctuations are ran-
dom, then g(r) must decline to a value of 0 for dis-
tances r, which are very much less than the dimen-
sions of the scattering medium.
The coefficient of expansion in Eq. (1) is now a

variable, h(r)/2p . It is correctly incorporated into
Eqs. (5) and (6) by placing it under the integral sign
of the expression Eq. (6), for G(u) and extending the
integral over the entire scattering medium.9 The
mean of G now becomes

Ḡ~u!5
h2V0

4p2 E
2`

`

d3rg~r! exp$ikr~u1z!%. (7)
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The right side of Eq. (7) is readily evaluated in
closed form if the correlation function is taken to be
a decaying exponential,

g~r!5expS 2
uru
l

D , (8)

where l is the correlation distance, an estimate of
the spatial extent of the index fluctuations. In the
case of randomly positioned and oriented fluctua-
tions, Eq. (8) holds for all directions of the vector r.
If the medium consists of parallel fibers, then Eq.
(8) holds only for directions of the vector r perpen-
dicular to the cylinder axes. In this latter case, g (r)
is constant for directions parallel to fiber axes.
Equation (7) can thus be evaluated in closed form.
Substitution of the result into Eq. (5) allows it to be
evaluated numerically.
Note that in the present case the relation between

S(0) and the change Dm in medium index given by
Eq. (2) must be altered by the replacement n0→n̄ .
Also, because h̄=0, the term S1(0) (Rayleigh-Gans)
makes no contribution. Finally, note that Eq. (5) has
both real and imaginary parts and that it is the real
part of S(0) that is identified with a refractive index
change. It can be seen by inspection, using Eqs. (5)
and (7), that the right side of Eq. (2) is a function of
the dimensionless variable l/l . Calling this quan-
tity h2Q(l/l ), the medium index m becomes

m
n̄

511h2Q~l/l !. (9)

The function Q is plotted in Figures 1 and 2 for the
three cases of interest. In one, the index fluctuations
are assumed randomly oriented and positioned. In
the other two, the fluctuations take the form of ran-
domly positioned, parallel cylinders. These latter
two cases are distinguished by the direction of the
incident electric field. A medium of parallel cylin-
ders is a uniaxial birefringent medium with its optic
axis parallel to the cylinder axes. Therefore the case
defined by an incident electric field directed paral-

Fig. 1 Calculated values of the function Q versus l/l
(wavelength/correlation length) for the case of randomly posi-
tioned and randomly oriented index fluctuations. The variance of
index fluctuations times Q gives the medium index change due to
aggregation.
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lel to the cylinder axes will be called ‘‘extraordi-
nary,’’ and the case with the incident electric field
perpendicular to the cylinder axes will be called
‘‘ordinary.’’ The difference me−m0 between the ex-
traordinary index [calculated from Eqs. (5), (7), and
(8) for the incident electric field parallel to cylinder
axes] and the ordinary index (incident electric vec-
tor perpendicular to cylinder axes) is a measure of
the birefringence of a medium of cylinders. This
difference is shown in Figure 3.
The imaginary part of S(0) yields a term result-

ing in an exponential decay of the transmitted
wave. Define

e5h2P~l/l !5
2p

k3V0
Im$S~0 !%. (10)

Then the transmitted amplitude is to be multiplied
by exp[−keL] and the transmitted intensity by
exp[−2keL], where L is the path length through the
scattering medium. The function P is plotted in Fig-

Fig. 2 Calculated values of the function Q versus l/l for the two
cases of index fluctuations with the symmetry of parallel cylinders.
In one case, the incident electric field is parallel to the cylinder axes
(called ‘‘extraordinary’’) and in the other, the incident electric field
is perpendicular to the cylinder axes (called ‘‘ordinary’’).

Fig. 3 The difference between the functions Q evaluated for the
extraordinary case (incident field parallel to cylinder axes) and the
ordinary case (incident field perpendicular to cylinder axes). This
difference multiplied by the variance of index fluctuations gives the
form birefringence of the medium me−mo .
ure 4 for the case of randomly oriented and posi-
tioned fluctuations.

DISCUSSION

As the lens ages and possibly becomes cataractous,
its optical properties change. One unambiguous
change is increased light scatter. There are also cir-
cumstances where it appears that refractive index
changes are the source of measured changes in re-
fractive power. An attempt has been made to ex-
ploit the relations between scattered light, protein
aggregation, and refractive index to better under-
stand these changes.
Van de Hulst6 has shown that small changes of

the refractive index of a medium are simply related
to forward scattered light [see Eq. (2)]. By applying
this result to the second term in an iterative series
for scattered light, it follows quite generally that the
increment Dm of medium index due to aggregation
is equal to the variance of index fluctuations times a
function of the ratio of wavelength to correlation
length. From Eq. (9),

Dm5
n22n̄2

n̄
Q~l/l !. (11)

The function Q(l/l ) is shown in Figures 1 and 2
for the three cases described in the previous section
and for a particular correlation function [see Eq.
(8)]. For the case of randomly positioned and ori-
ented index fluctuations Q=1.17 in the limit of large
correlation length, l @l, and Q=0 in the limit of
small l (Rayleigh limit). This provides justification
for interpreting Dm as the medium index change
due to aggregation.
In the case that index fluctuations take the form

of parallel cylinders Q=0.67 in the large l (i.e.,
large cylinder diameter) limit for both polarizations
of incident light (see Figure 2). The difference in Dm
for these two cases must be interpreted as the form

Fig. 4 Calculated values of the function P versus l/l
(wavelength/correlation length) for the case of randomly oriented
and positioned index fluctuations. The product of P with the vari-
ance of index fluctuations and the wave number (k) gives the space
rate of decay of the transmitted wave.
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birefringence of the medium of parallel cylinders.9

Note that the difference in values of the function
Q(l/l ) goes from 0 (large l ) to 1 (small l ) in Fig-
ure 3.
In the Rayleigh limit (small l ), the form birefrin-

gence therefore becomes

me2m05h25
f1f2~n12n2!

2

f1n11f2n2
, (12)

where f1 is the fractional volume of the cylinders, f2
is the ground substance, and n1 , n2 are the indices.
The birefringence of a medium of parallel cylinders
in the Rayleigh limit (l@cylinder diameter) was de-
rived in 1912 by Wiener.12 The result given in Eq.
(12) is in agreement with the result of Wiener when
un1−n2u!1. The result shown in Figure 3 when mul-
tiplied by h̄2 is therefore a generalization of the re-
sult of Wiener to cylinders of any diameter.9 In par-
ticular, the birefringence goes to 0 for large cyl-
inders. The very small measured birefringence of
the lens has been attributed to a counterbalancing
of form and intrinsic contributions.13,14 The large
(compared to wavelength) dimensions of lens fiber
cells, the presumed contributors to form birefrin-
gence, offer an alternative explanation.
Is the index change Dm of Eq. (11) sufficiently

large enough to produce measurable results? An in-
crease in refractive power of the lens of 1 to 2 di-
opters precedes the development of nuclear
cataract5 probably due to an increased refractive in-
dex in the lens nucleus. While questions remain
concerning the source of this increase in index, it is
possible that the index change Dm discussed before
makes a contribution. It has been observed that
backscattered light from the nuclei of noncatarac-
tous lenses decreases as one moves away from the
lens axis.15 This suggests a very simple model of a
nuclear cataract. Assume a spherically symmetrical
distribution of protein aggregates such that back-
scattered light decreases from a maximum at the
center to a minimum at a distance of 1 mm from the
center. Also assume that the decrease is propor-
tional to the square of the distance from the center.
Then the change Dm of medium index must de-
crease from a maximum at the center to a value of 0
at the surface in the same way. In order that this
sphere of 2 mm diam with a graded index have a
refractive power of 1 diopter, the maximum value
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of Dm must be about 1/5000. Assume a wavelength
of 550 nm and a correlation length (i.e., protein ag-
gregate diameter) of about 50 nm. Then from Fig-
ures 1 and 4 one can estimate the decay constant e
[see Eq. (10)] at each position in the sphere from the
index change Dm at that position. In this instance
they are about equal. Calculating the transmitted
light along each ray through the sphere and adding
up the contributions of all rays gives a total trans-
mittance of about 1/3 across the sphere. In sum-
mary, if this simple model of a nuclear cataract al-
lows about 1/3 of incident light to be transmitted
without being scattered, then it adds a power of 1
diopter to the lens. While this argument is certainly
not conclusive, it is perhaps suggestive.
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