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Abstract. Much interest has arisen in the problem of detecting weak optical subpixel objects in
a sequence of images immersed in a heavy homogeneous Gaussian clutter background. In optical
systems, the presence of the objects changes the background plus the channel noise covariance
matrix. Hence, this matrix may be different under null and alternative hypotheses. Because the
maximum likelihood estimate of the background covariance matrix is not available when using
the primary data set, we use an approximate estimate of a certain number of eigenvalues of the
background covariance matrix that are available for estimation. We derived the general likeli-
hood ratio test for the problem at hand and obtained the modified spectrum matching detector
(MSpMD). Using the simulation results, we contrast it with well-known spectrum matching
detectors and the hypothesis-independent matched subspace detectors. We also present exper-
imental results of small subpixel objects detection on an agitated sea surface, using digital optical
experiments that demonstrate the validation of the simulating results. We show the advantage of
the MSpMD that allows to detect small subpixel floating objects on an agitated sea surface even
with the same means and variances of the reflected signals from the sea surface and the object. ©
The Authors. Published by SPIE under a Creative Commons Attribution 4.0 Unported License. Distribution
or reproduction of this work in whole or in part requires full attribution of the original publication, includ-
ing its DOI. [DOI: 10.1117/1.JRS.14.046513]
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1 Introduction

The detection of optical objects immersed in an observed scene can be difficult when the object
is embedded in a dominant cluttered background. Due to the limitations of the spatial resolution
of imagery, the objects are often smaller than the pixel size and resolved within a pixel. In such
cases, the objects are called subpixel objects. The solution to this problem is very difficult espe-
cially when the object area is less than the space resolution of one pixel (subpixel case).

The common detection algorithms include the spectral feature fitting (SFF),1–4 orthogonal
subspace projection (OSP),5–7 constrained energy minimization (CEM),5,8 matched filter
(MF),1,9–17 and mixture tuned matched filtering (MTMF).18–22 The SFF method uses a spectral
absorption feature in its comparisons. It may fail to extract the object of interest when the object
does not have obvious spectral characteristics distinguished from those of the background. OSP
requires the spectral signature of both the object and background. CEM is a linear filter, which
constrains a desired target signature while minimizing the total energy of the output of other
unknown signatures. CEM requires spectral prior knowledge of the object and utilizes the sec-
ond-order statistical information of the image. MF is another widely used object detection algo-
rithm, which is deduced from the generalized likelihood ratio test (GLRT).9,11 In the Bayes or

*Address all correspondence to Victor Golikov, vgolikov@pampano.unacar.mx

Journal of Applied Remote Sensing 046513-1 Oct–Dec 2020 • Vol. 14(4)

https://orcid.org/0000-0001-7241-2168
https://orcid.org/0000-0002-1960-3624
https://doi.org/10.1117/1.JRS.14.046513
https://doi.org/10.1117/1.JRS.14.046513
https://doi.org/10.1117/1.JRS.14.046513
https://doi.org/10.1117/1.JRS.14.046513
https://doi.org/10.1117/1.JRS.14.046513
mailto:vgolikov@pampano.unacar.mx
mailto:vgolikov@pampano.unacar.mx
mailto:vgolikov@pampano.unacar.mx


Neyman–Pearson sense, when the object and background classes follow multivariate normal
distributions with the same covariance matrix, the MF detector can get an optimum detection
result. In fact, MF and CEM detectors have a similar form, and the main difference is that the
data used in MF detector have to be centralized first. MTMF17,18 combines the statistical method
of the MF with the linear mixing model, which can produce a better detection result.

Adaptive cosine/coherent estimate (ACE) is another statistical hypothesis test-based
method.3,18 Unlike an adaptive matched subspace detector (AMSD), ACE assumes no structured
background. Instead, ACE models the background as a multivariate normal distribution. AMSD
is an algorithm that formulates the object and background subspaces and uses the linear mixture
model and the generalized likelihood ratio (GLR) approach to separate a probable subpixel
object.17,18 The key factors in the AMSD’s design (synthesize) are the object and the background
parameters, which can be estimated by the maximum likelihood (ML) method and with which a
Neyman–Pearson detector can be designed to maximize the probability of detection at a certain
probability of the false alarm.

The matched subspace detector (MSD) is a classical subspace-based method for subpixel
target detection. This method has been intensively developed in recent years for solving various
applied problems. The recently proposed MSDinter23 introduces “interaction effects” terms into
the popular MSD from regression analysis in multivariate statistics and the bilinear mixing
model in spectral unmixing. The matched shrunken subspace detector24 and matched shrunken
cone detector25 are developed by shrinking the abundance vectors of the target and background
subspaces in the hypothesis models of the MSD. The noise model assumes that noise has the
same variance over different bands, which is usually unrealistic in practice. In Ref. 26, it was the
equal variance assumption and proposed a matched subspace detector with heterogeneous
noise (MSDH).

The statistical features of the noise and the background for statistical hypotheses H0 and H1

may be different from each other. The hypothesis-independent method was introduced to solve
this problem, where the noise power is only known under the null hypothesis and the background
power depends on statistical hypothesis. Recently, in Ref. 27, using this method, the hypothesis-
independent matched subspace detector (HMSD) was obtained.

In optical systems, the small object may completely cover the pixel cell on the fluctuating
sea surface, and, in this case, the received signal contains only the target signal plus channel
noise. Hence, the presence of the object shades the sea surface and removes the sea clutter from
the received signal. When the object does not completely cover the pixel’s area, the received
signal is equal to sum of the signal reflected from the sea surface plus channel noise and the
signal from the object plus channel noise. The covariance matrix of this signal depends on the
shape of the background covariance matrix, the area occupied by the object inside the pixel’s
area, and the ratio of the background power to the channel noise power. Therefore, in this case, it
is more appropriate to use the different background covariance matrices for the different
hypotheses.

In the literature, the detection problem with the hypothesis-dependent noise power had been
first considered in Ref. 12 for the case of the white normal noise. In Ref. 12, Vincent et al.
examined specific aspects of the situation where the presence of the signal of interest triggers
an increase in the noise power. In Ref. 13, the asymptotic optimum quadratic detector of the
subpixel targets in a Gaussian environment has been designed. It was assumed that the back-
ground covariance matrix and power under the null hypothesis are a priori known, but under the
alternative hypothesis is that the background power can be a priori unknown. The background
has the same normalized covariance matrix under hypothesesH0 andH1, but different variances.
In Ref. 13, the method of whitening data is used to design the GLRT.

In this paper, we consider the problem of detecting small subpixel optical floating objects
surrounded by an agitated sea surface in the sequence of N digital images immersed in the
Gaussian channel noise. We assume that the subpixel object may be present completely or par-
tially anywhere in the pixel’s area. We assume that the subpixel area is partially or completely
covered by the object, and the presence of the object changes the received signal covariance
matrix. In other words, we are considering a case where the appearance of an object changes
the dynamic background in the area where it appeared. The common drawback of the published
works10–12 is the assumption that the background plus noise normalized covariance matrix under

Golikov et al.: Generalized likelihood ratio test for optical subpixel objects’ detection. . .

Journal of Applied Remote Sensing 046513-2 Oct–Dec 2020 • Vol. 14(4)



hypothesis H0 remains the same one as under hypothesis H1. This case corresponds to the
behavior of the reflected signals in radar, sonar, and communication systems. In optical/infrared
systems, it is typical that the appearance of the object shades the background, hence the received
signal has different covariance structures under hypotheses H0 and H1. When the different noise
covariance matrices correspond to a different statistical hypothesis, it is not possible to use the
whitening method for GLRT synthesis. To solve this problem, the singular value decomposition
method is used here. In the asymptotic approximation, the eigenfunctions of the noise covariance
matrices are orthogonal complex exponential functions. Applying these functions to input sig-
nals diagonalizes the noise covariance matrices for both hypotheses. GLRT synthesis requires
MLE of the unknown noise parameters. In this case, the MLE corresponds to an estimate of the
spectral components of the background. In practice, the width of the spectrum of reflections from
the object is less than the width of the background spectrum, which makes it possible to estimate
the energy spectrum of the background at an alternative hypothesis in a frequency band free of
the useful signal. These spectral estimates are used to obtain the modified spectrum matched
detector (MSpMD).

The remainder of this paper is organized as follows. Section 2 describes our modified spec-
trum matching detector. Section 3 details the simulation experiments for comparative detectors
assessments of the proposed detector, SpMD, and HMSD. The results of the real experiments
showing that the proposed detector performance is higher than the SpMD and the HMSD are also
presented. Section 4 summarizes this paper.

2 Problem Formulation and Detector Designs

2.1 Scene

We consider a signal at the output of the video camera composed of K successive frames. The
typical object is floating and fluctuating according to the sizes of marine waves and its own
shape, size, weight, etc. The reflected light signals from a typical object and its spectrum depend
on its oscillations on the sea surface. In this paper, we consider the subpixel case when the target
is embedded within a single pixel and occupies some part of the pixel’s area. Sea surface behav-
ior consists of a superposition of random sinusoidal surface waves and is mainly driven by the
wind velocity. The spectral distributions of the reflected light signals from sea surface depend on
wind speed (model by Pierson and Moskowitz) and typically contain a quantity of spectral com-
ponents much more than the number of the floating object spectral components.

2.2 Background Space and Model

It is assumed that the optical background clutter is the predominant noise factor and is modeled
as a correlated Gaussian noise with covariance matrix Rb. The video camera receives K suc-
cessive frames of the reflected signal plus a channel noise. This paper discusses the detection of a
small floating object using a vector x ¼ ½x1 x2 · · · xN �T that consists of the values received from
the same pixel in successive frames. It is assumed that the channel noise is uncorrelated white
Gaussian noise then background signal x ∼ Nðm;RbnÞ. We consider in this paper the stationary
homogeneous background where the vector m ¼ ½m1 m2 · · · mN �T is the vector of the average
for the any pixel (in the homogeneous case) in the different frames of the background and m1 ¼
m2 ¼ · · ·¼ mN in the stationary case. The covariance matrix of the received background signals
Rbn ¼ Rb þ σ2nI. The covariance matrix is symmetric and nonnegative definite. Therefore, there
exists an orthogonal matrix U such that Rbn ¼ UDbnUH . Here, U is the K × K eigenvector
matrix of the background plus noise covariance matrix with eigenvalues
λ0 ≥ λ1 ≥ : : : ≥ λðN−1Þ ≥ 0, Dbn ¼ diag½λ2bn0 · · · λ2bnðN−1Þ�. In the stationary case for N ≫ 1,

we assume that the eigenvector matrix U can be approximated as the basis matrix
H ¼ ½h0; h1; : : : ; hN−1� with orthonormal columns. As such, as N → ∞, the eigenvalues λ2i and
eigenvectors hi ¼ 1ffiffiffi

K
p ½hi0hi1 · · · hiðN−1Þ�T are easily found.14 Letting PxðfÞ denote the power

spectral density (PSD) of x we have that as N → ∞, λ2i ¼ PxðfiÞ, hin ¼ expðj2πnfiÞ, for
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i; n ¼ 0;1; : : : ; ðN − 1Þ, frequencies fi ¼ i∕N, and j ¼ ffiffiffiffiffiffi
−1

p
. The eigenvalues λ2i are equally

spaced samples of the PSD over the frequency fi interval [0,1] and the eigenvectors hi are the
discrete Fourier transform (DFT) vectors. The approximation will be a good one where the data
record length N is much larger than the correlation time of x. Note that the vectors hi are ortho-
normal and the idempotent projection matrix takes the form PH ¼ HðHHHÞ−1HH ¼ HHH and
the matrix projection on the i’th axis ðPHÞi ¼ hihHi . In this paper, we will use the DFT matrix H
as the approximation of the eigenvector’s matrix U

EQ-TARGET;temp:intralink-;e001;116;648

H ¼

2
666664

1 1 · · · 1

z10 z11 · · · z1N−1

..

. ..
. ..

. ..
.

zN−1
0 zN−1

1 · · · zN−1
N−1

3
777775
; (1)

where hi;n ¼ zni ¼ 1ffiffiffi
N

p expðj2πinK Þ, j ¼ ffiffiffiffiffiffi
−1

p
. In this work, we consider the input signals’ space

hHi that is equal to the background plus noise covariance matrix eigenvector’s space.

2.3 Object Subspace and Model

The received signal from the small fixed object in successive frames is often modeled using a
single zero frequency spectral line. However, since the object is a floating object on the agitated
sea surface, the spectral radiance is affected by the object oscillations. Therefore, the spectrum of
reflections from a floating object consists of several low-frequency lines. We define the N × p
matrix Hs ¼ ½h0; h1; · · · ; hp−1� and its corresponding object subspace hHsi, which is the span of
fhigp−10 . We next define the N × ðN − pÞ matrix, H⊥

s ¼ ½hp; hpþ1; · · · ; hN−1�, and its corre-
sponding subspace hH⊥

s i, which is the span of fhigN−1
p . We assume that Hs and H⊥

s are, respec-
tively, full rank and that H⊥H

s Hs ¼ 0. Let Hs be the N × p mode matrix with columns that
contain the orthogonal basis vectors that span the object subspace, p < N. The object signal s ¼
Hsθ ¼ ½s1 s2 · · · sN �T is the deterministic unknown signal of interest, which belongs to a
known subspace of the eigenvectors hHsi of size N × p, where the abundance vector θ (size
p × 1) is unknown. The orthogonal subspace hH⊥

s i contains the columns from p to N − 1.
The projection matrix onto subspace hHsi is equal to Ps ¼ HsHH

s and onto orthogonal subspace
hH⊥

s i is equal to P⊥
s ¼ H⊥

s ðH⊥
s ÞH .

2.4 Subpixel Target Detection Problem

The problem is to find the best algorithm for detecting a partially known relatively small target
signature in a given image sequence. We considerN sequential images of the analyzed video. We
select one pixel with the same coordinates on each image. We are processing the vector of the
received signal x ¼ ½x1 x2 · · · xN �T . We assume that an analyzed pixel is partially filled by the
object, that is, we focus attention on a subpixel or nonresolved small objects. We develop a
hypothesis test that distinguishes the signal-plus-background-plus-noise statistical hypothesis
(H1) from the background-plus-noise statistical hypothesis (H0). We can represent two statistical
hypotheses

EQ-TARGET;temp:intralink-;e002;116;182

�
H0∶ x ¼ cþ n;
H1∶ x ¼ bsþ ð1 − bÞcþ n

; (2)

where c ¼ ½c1 c2 · · · cN �T is the correlated Gaussian background clutter vector c ∼ Nðm;RbÞ,
n ¼ ½n1 n2 · · · nN �T is the uncorrelated Gaussian channel noise vector n ∼ Nð0; σ2nIÞ,
s ¼ ½s1 s2 · · · sN �T is the object unknown deterministic signal vector, and b ≤ 1 is the
object fill factor (the relation between the pixel area occupied by an object and total pixel
area). Under H0 i.e., the background-plus-noise hypothesis, we have x ∼ Nðm;RbnÞ, where
Rbn ¼ Rb þ σ2nI, and under H1, i.e., the signal-plus-background-and-noise hypothesis
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x ∼ N½bsþ ð1 − bÞm;Rsbn�, where covariance matrix Rsbn ¼ ð1 − bÞ2Rb þ σ2nI and a priori
unknown. Note that we assume the homogeneous Gaussian environment and assume that the
secondary data set is available to estimate the background-plus-noise mean m and covariance
matrix Rbn under H0. The covariance matrix Rsbn of the received signal under hypothesis H1

depends on object fill factor b, background covariance matrix Rb, and channel noise variance σ2n.
In the case of b ¼ 1, the background covariance matrix of the received signal under H1 is equal
to the uncorrelated Gaussian noise case: Rsbn ¼ σ2nI. We assume that the primary data set does
not allow to estimate the Rsbn under H1 completely, but it is possible to estimate PSD for the
frequencies (fi ≥ p∕N) that do not contain reflection components from the object. It is well
known that the reflections from a floating object contain only low-frequency spectral compo-
nents in comparison with reflections from an agitated sea surface. In this paper, we will use this
case for GLRT synthesis.

2.5 GLR Tests in the Case of Known and Unknown Background Power;
Normalized Covariance Matrices Rbn and Rsbn Are Known

The GLRT synthesis requires calculating of maximum likelihood estimate (MLE) unknown
parameters, then estimating and substituting them in the likelihood equation. We cannot use
the well-known whitening method because the background covariance matrices under H0 and
H1 are different. In this section, we consider the case where the MLE of the background spec-
trum using primary data is impossible, for example, when the spectral range of the reflections
from the background and the object coincide. We also assume that object fill factor b ¼ 1 and
normalized covariance matrices Rsbn, Rbn, and background power are a priori known. The GLR
statistic for the problem in hand is

EQ-TARGET;temp:intralink-;e003;116;444L ¼ maxθ p1ðxÞ
p0ðxÞ

; (3)

where p1ðxÞ and p0ðxÞ are the probability density functions (pdfs) under hypothesesH1 andH0,
respectively. It is well known14 that the log likelihood ratio is then

EQ-TARGET;temp:intralink-;e004;116;375 ln ðLÞ ¼ ln
ðdet RbnÞ1∕2
ðdet RsbnÞ1∕2

−
1

2
½ðx −m −Hsθ̂ÞTR−1

sbnðx −m −Hsθ̂Þ − ðx −mÞTR−1
bn ðx −mÞ�;

(4)

where MLE of the abundance vector

EQ-TARGET;temp:intralink-;e005;116;303θ̂ ¼ HH
s ðx −mÞ; (5)

we will substitute in Eq. (4).
The first term is independent of the data, so we may ignore it and use only the quadratic form

EQ-TARGET;temp:intralink-;e006;116;246 lnðL1Þ ¼ ðx −mÞTR−1
bn ðx −mÞ − ðx −mÞTP⊥

s R−1
sbnP

⊥
s ðx −mÞ; (6)

where P⊥
s ¼ I − Ps projection matrix on the subspace orthogonal to subspace hHsi. The first and

second terms in Eq. (6) can be represented in following forms:

EQ-TARGET;temp:intralink-;e007;116;189ðx −mÞTR−1
bn ðx −mÞ ¼ ðx −mÞTHHHR−1

bnHHHðx −mÞ; (7)

EQ-TARGET;temp:intralink-;e008;116;145ðx −mÞTP⊥
s R−1

sbnP
⊥
s ðx −mÞ ¼ ðx −mÞTH⊥

s ðH⊥
s ÞHR−1

sbnH
⊥
s ðH⊥

s ÞHðx −mÞ: (8)

Using the spectral representation of the signals and covariance matrices, we may simplify the
quadratic form [Eq. (6)]. We use Hotelling transform and obtain the complex uncorrelated
vector y
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EQ-TARGET;temp:intralink-;e009;116;735y ¼ HHðx −mÞ ¼ ½y0 y1 : : : yN−1�T: (9)

The inverse covariance matrices in Eqs. (7) and (8) take a diagonal form

EQ-TARGET;temp:intralink-;e010;116;700HHR−1
bnH ¼ D−1

bn ¼ diag½λ−2bn0; λ−2bn1; : : : ; λ−2bnðN−1Þ�; (10)

EQ-TARGET;temp:intralink-;e011;116;654ðH⊥
s ÞHR−1

sbnH
⊥
s ¼ D−1

sbn ¼ diag½0; : : : ; 0; λ−2sbnðpÞ; : : : ; λ
−2
sbnðN−1Þ�; (11)

where λ2bni ¼ PbnðfiÞ are the eigenvalues (PSD) of the Rbn, and λ2sbni ¼ PsbnðfiÞ are the eigen-
values (PSD) of the Rsbn. The second term in Eq. (6) can be simplified

EQ-TARGET;temp:intralink-;e012;116;615ðx −mÞTP⊥
s R−1

sbnP
⊥
s ðx −mÞ ¼

XN−1

i¼p

yiy�i
λ2sbni

: (12)

Then, we obtain the following statistic test:

EQ-TARGET;temp:intralink-;e013;116;554 lnðL1Þ ¼
XN−1

i¼0

yiy�i
λ2bni

−
XN−1

i¼p

yiy�i
λ2sbni

>H1

<H0

η; (13)

where ð Þ� is the complex conjugate value and η is the threshold. This GLRT is known as the
spectrum matching detector16 (SpMD).

The GLR statistic in the case of unknown background power σ21 under H1 is

EQ-TARGET;temp:intralink-;e014;116;466Lun ¼
maxθ;σ2

1
p1ðx; θ; σ21Þ
p0ðxÞ

: (14)

The GLRT-based detector named HMSD was obtained in Ref. 27 in the following form:

EQ-TARGET;temp:intralink-;e015;116;410DHMSDðyÞ ¼
mkytk2
Nσ20

− ln
ky⊥t k2

ðN − pÞσ20
; (15)

where m is the sensitive factor, yt ¼ Psy, y⊥t ¼ P⊥
s y.

2.6 GLRT in the Case of Unknown Covariance Matrix Rsbn

It is well known that GLRTs are obtained by inserting MLE for unknown parameters into the
likelihood ratio. In the case of some unknown parameters of the pdf, it must be estimated under
the alternative hypothesis, i.e., in our case the detector should be able to estimate the Rsbn using
the received primary signal x. But the received signal x under the alternative hypothesis contains
the sum of the useful signal from the object-plus channel noise and the background clutter
(b < 1). The presence of the useful signal bs with unknown parameters in the received sample
does not make it possible to estimate the Rsbn. In this paper, we use the physically meaningful
phenomenon where the maximum spectrum frequency fi ¼ ðp − 1Þ∕N of the received signal
from the floating object is less than the maximum frequency from the sea surface
fi ¼ ðN − 1Þ∕N.

In practice, the frame rate in the camera should be sufficient to obtain a spectral range in
which it is possible to separate the first low-frequency region ½0 ≤ fi < ðp∕NÞ�, where there is
energy from the object and the background plus noise, and the second frequency region
½pN ≤ fi ≤ ðN − 1Þ∕N�, where there is no energy from the object. Since the MLE of the covari-
ance matrix Rsbn is not completely available in these conditions using the primary data set, we
can replace the MLE of the covariance matrix by the MLE of the eigenvalues of the covariance
matrix. Under these conditions, the MLEs of the eigenvalues are available through estimates of
the received signal PSD PxðfiÞ, where i ∈ ðp;N − 1Þ.

It is well known that GLRTs are obtained by inserting MLE for unknown parameters into the
likelihood ratio. The GLRT is obtained by considering the joint pdf of the measurement x under
H0 and H1. The GLRT expression for the problem in hand is
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EQ-TARGET;temp:intralink-;e016;116;735L2 ¼
maxλ2sbni;θ

p1ðxjH1Þ
p0ðxjH0Þ

>H1

<H0

η2; (16)

where η2 is the threshold. The determinant of the background-plus-noise covariance matrix
detðRbnÞ ¼

QN−1
i¼0 λ2bni is available using the secondary data set and for the signal-plus-

background-plus noise covariance matrix detðRsbnÞ ¼
Q

N−1
i¼0 λ2sbni. Under hypothesis H1, it is

possible to obtain the MLE of the λ̂2sbni only for i ¼ p; : : : ; N − 1

EQ-TARGET;temp:intralink-;e017;116;645λ̂2sbni ¼ yiy�i : (17)

The log likelihood ratio is approximately

EQ-TARGET;temp:intralink-;e018;116;599 ln ðL2Þ ¼ ln

Q
N−1
i¼0 λ2bniQ
N−1
i¼p yiy�i

þ
XN−1

i¼0

yiy�i
λ2bni

− ðN − pÞ: (18)

We can obtain MSpMD

EQ-TARGET;temp:intralink-;e019;116;536

XN−1

i¼0

yiy�i
λ2bni

−
XN−1

i¼p

ln

�
yiy�i
λ2bni

�
>H1

<H0

η3; (19)

where η3 is the threshold. We can see from Eq. (19) that the detection quality depends on the
relation between the target spectra contribution (the first term) and the background spectra
change contribution (the second term). Note that the detector SpMD [Eq. (13)] uses only changes
in target energy, and the detector 2 uses changes in target energy and changes in background
energy but does not use change in the shape of the background spectrum under hypothesis H1.

3 Performance Assessment

To test the effectiveness of the MSpMD, a series of experiments is conducted on the synthetic
and real data sets. The performance of MSpMD is compared with the well-known SpMD and the
recently proposed HMSD. The experimental platform is a PC with Intel Core i5, 2.20 GHz, 4G
memory, and 64-bit Windows 10. All algorithms are implemented by MATLAB® 2015a. Since
closed-form expressions for the false alarm probability PF and the detection probability PD are
not available for the MSpMD, we evaluated them resorting to standard Monte Carlo techniques
based on 100∕PF and 100∕PD independent trials, respectively. In order to limit the computa-
tional burden, we set PF ¼ 10−3. We assess the performances of the MSpMD [Eq. (19)], the
well-known SpMD15 [Eq. (13)], and the recently proposed HMSD [Eq. (15)] in the case of the
difference between statistical parameters (the means, the variances, and covariances) of the
unstructured background and objects. At the analysis stage, one must specify the back-
ground-plus-noise correlation properties as well as the other statistical properties of the back-
ground and the object. As to the background normalized covariance matrix, we assume that it has
an exponential shape, i.e., Rb ¼ ½ri;k� ¼ ½ρji−kj�, where ρ ¼ ð0.5 − 0.9Þ is the one-lag correlation
coefficient. As to the useful primary data, it is now modeled as the deterministic target signal
with p independent basis modes (the target modes matrix H is a Vandermonde matrix with dis-
crete complex exponential elements) and the abundance vector θ. The parameter θ is unknown in
practice, but for our scenario, it is possible to use the appropriate deterministic approxima-
tion θ ∈ ð0;1Þ.

The detection performance of the analyzed detectors depends on several parameters: (1) the
difference between the statistical means of reflections from the sea and from the target, (2) the
ratio of the variances of the signals from the sea and from the target, (3) the ratio of channel noise
variances and reflections from the sea surface, (4) correlation factor of the reflections from the
sea surface, (5) object fill factor, (6) sample size N, and (7) estimated number p of harmonics in a
signal reflected from a floating object. It is obvious that in the absence of differences in the
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means and variances of the object and the background, the object (Gauss model) can be detected
only in the presence of the differences in the covariance matrix or in the spectral composition.

In Fig. 1, the detection probability PD is shown as a function of the difference between mean
values (measured in entire units between −255 and 255) of the reflections from the object and
background for object fill factors b ¼ 1 for three detectors: SpMD, MSpMD, and HMSD. The
ratio between an object variance and background variance is equal to 1. These curves show the
fact that MSpMD has a detection probability more than 0.93 even when there is no difference in
the average values and variances of the object and background. This is because the MSpMD is
sensitive to differences between a maximum frequency of the object and background reflections.
The second term in Eq. (19) depends on the ratio of the energy spectra of the received signals at
frequencies higher than the maximum object frequency in the presence and absence of an object.
The received signals reflected from the sea plus channel noise are present under the null hypoth-
esis, and in the presence of an object (alternative hypothesis), only channel noise is present
(b ¼ 1) on frequencies higher than the maximum object frequency. The SpMD is sensitive only
to the contrast of the means and variances of the object and background and hence SpMD cannot
detect the object in these conditions. The HMSD is also sensitive to contrast between the back-
ground and channel noise variances under null and alternative hypotheses at high frequencies.
But the HMSD is not sensitive to changes in the shape of the background spectrum on frequen-
cies higher than the maximum object frequency. Therefore, the detection efficiency of the HMSD
is inferior to that of proposed detector MSpMD, which is sensitive to the mean, variance, and
different spectrum shape of the received signal under null and alternative hypotheses. In Fig. 2,
the object fill factor b ¼ 0.8 with respect to b ¼ 1 in the case of Fig. 1. All other object and
background parameters are the same. One can see that the increasing the object fill factor for
detectors increases the quality of detection for both detectors. Analysis of the graphs in Fig. 3
shows that increasing the sample size N significantly increases the detection probability of the
MSpMD. In Figs. 4 and 5, the performance of the MSpMD at object fill factor b ¼ 1 and 0.6 is
significantly higher than HMSFD and SpMD performances, respectively. Figures 4 and 6 show
that the detection probability depends on the ratio between channel and background variances
(0.01 and 0.04, respectively). This comparison shows that channel noise significantly affects the
quality of the all detectors, but only the MSpMD’s performance remains high. In Fig. 7, the
detection probability is shown as a function of the difference between mean values of the

Fig. 1 Detection probability versus difference between mean values of the object and background
for the object fill factor b ¼ 1, false alarm probability F ¼ 0.001, channel variance/background
variance = 0.005, object variance/background variance = 1, p ¼ 3, N ¼ 10, ρ ¼ 0.85 (simulated
data set).
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Fig. 2 Detection probability versus difference between mean values of the object and background
for the object fill factor b ¼ 0.8, false alarm probability F ¼ 0.001, channel variance/background
variance = 0.005, object variance/background variance = 1, p ¼ 3, N ¼ 10, ρ ¼ 0.85 (simulated
data set).

Fig. 3 MSpMD detection probability versus difference between mean values of the object and
background for different sample sizes N ¼ 10, 20, 30, b ¼ 1, F ¼ 0.001, channel variance/back-
ground variance = 0.005, object variance/background variance = 1, p ¼ 5, N ¼ 20, ρ ¼ 0.85
(simulated data set).
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reflections from the object and background for object fill factors b ¼ 1 at changing of the maxi-
mum frequency p of the reflection from the object. When the maximum frequency p is
increased, the first term [Eq. (19)] is increased, but the second term [Eq. (19)] is decreased.
Consequently, the detection probability can have the maximum when the valor p is between
1 and maximum. In Fig. 8, the detection probability versus false alarm probability curves

Fig. 4 Detection probability versus difference between mean values of the object and background
for object fill factor b ¼ 1, F ¼ 0.001, channel variance/background variance = 0.01, object vari-
ance/background variance = 1, p ¼ 5, N ¼ 20, ρ ¼ 0.85 (simulated data set).

Fig. 5 Detection probability versus difference between mean values of the object and background
for object fill factor b ¼ 0.6, F ¼ 0.001, channel variance/background variance = 0.01, object vari-
ance/background variance = 1, p ¼ 5, N ¼ 20, ρ ¼ 0.85 (simulated data set).
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Fig. 6 Detection probability versus difference between mean values of the object and background
for object fill factor b ¼ 1, F ¼ 0.001, channel variance/background variance = 0.04, object vari-
ance/background variance = 1, p ¼ 5, N ¼ 20, ρ ¼ 0.85 (simulated data set).

Fig. 7 MSpMD detection probability versus difference between mean values of the object and
background for different number p of the object harmonics, b ¼ 1, F ¼ 0.001, channel vari-
ance/background variance = 0.02, object variance/background variance = 1, ρ ¼ 0.8, N ¼ 20
(simulated data set).

Golikov et al.: Generalized likelihood ratio test for optical subpixel objects’ detection. . .

Journal of Applied Remote Sensing 046513-11 Oct–Dec 2020 • Vol. 14(4)



(ROC, receiver operating characteristic) show that the detection probability is decreased at small
values of the false alarm probability, and the MSpMD provides a higher detection quality than
the HMSD and SpMD.

To test the effectiveness of the MSpMD, HMSD, and SpMD, two series of experiments are
conducted on the real dataset. We use two image sequences with 10,000 frames (Figs. 9, 10,13,
and 14) using the observed regions: 5 × 5 pixels (Fig. 10) and 7 × 10 (Fig. 14). The video camera
had a velocity equal to 30 frame∕s. Figure 11 shows the ROC curves of the floating plastic

Fig. 8 Detection probability versus false alarm probability for different N, b ¼ 0.8, p ¼ 8, channel
variance/background variance = 0.01, object variance/background variance = 1, ρ ¼ 0.9, N ¼ 30
(simulated data set).

Fig. 9 An image of a floating plastic container 1 (marked observed region is 5 × 5 pixels).
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container 1 for the observed region of 5 × 5 pixels (see Fig. 10). In this case, the object fill factor
is different for different pixels. We consider two pixels’ sequences (N ¼ 30 frames) marked in
Fig. 10 (object fill factor b ¼ 0.5 and b ¼ 1). The experimental results show that the MSpMD
detection performance significantly outperforms the HMSD at any object fill factor. Figures 9
and 10 show the case of the small barely discernible object. Figure 12 shows the ROC curves of
the floating plastic container 2 for observed regions of 10 × 10 pixels (see Fig. 13). In this case,
the object fill factor is different for different pixels. In this case, we consider two pixels’ sequen-
ces (N ¼ 30 frames) marked in Fig. 14 (object fill factor b ¼ 0.6 for pixel 1 and b ¼ 1 for

Fig. 10 The observed square region (marked in Fig. 9) with size 5 × 5 pixels and two marked
pixels with different object fill factors b.

Fig. 11 Real data set (see Figs. 9 and 10). Detection probability versus false alarm probability for
different object fill factors for MSpMD and HMSD at b ¼ 1 and 0.5, N ¼ 30, p ¼ 5.
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pixel 2). The second experimental results show that the MSpMD detection performance signifi-
cantly outperforms the HMSD at any object fill factor.

4 Conclusion

In this paper, we have proposed MSpMD for subpixel targets in the presence of the Gaussian
unstructured background and noise. We derived the GLRT for the case where the part of the
background spectra is estimated under the null and the alternative hypotheses. The proposed
detector modifies the classical SpMD by adding the corrective term proportional to the energy

Fig. 12 Real data set (see Figs. 13 and 14). Detection probability versus false alarm probability for
MSpMD and HMSD at object fill factors b ¼ 1 and b ¼ 0.6, N ¼ 30, p ¼ 8.

Fig. 13 An image of a floating plastic container 2 (marked observed region is 10 × 10 pixels).
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variation (under null and alternative statistical hypotheses) of the spectrum at frequencies
more than the maximum object frequency. Numerical simulations and two series of experiments
conducted on the real dataset show that the new detector MSpMD considerably outperforms
the SpMD and the recently proposed HMSD. The MSpMD, HMSD, and SpMD efficiencies
depend on contrast between mean and variance of the reflections from the background and
object, the object fill factor, ratio channel noise variance-background variance, and number
of pixels in received signal. However, only MSpMD is sensitive to the spectrum shape contrast
of the received signal under null and alternative hypotheses. The MSpMD was demonstrated as
an effective way of subpixel target detection in the case of barely discernible small floating
objects.
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