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Abstract

Background: Finding optimal processing conditions to reduce defectivity is a major challenge
in high-resolution lithographic tools such as directed self-assembly and extreme ultraviolet
lithography.

Aim:We aim to develop an efficient automated method that can detect defects and identify their
types and locations, allowing for assessing the performance of lithographic processing condi-
tions more easily.

Approach:We propose a deep learning approach using an object recognition neural network for
the classification and detection of defects in scanning electron microscopy (SEM) images fea-
turing line-space patterns. We optimized our network by exploring its design variables and
applied it on a case with limited numbers of SEM images available for training the network.

Results: With an optimized network and data augmentation strategies (flipping and mixing
images from simulations), it was possible to achieve a significant increase in the performance
of the network. Transferability of the network was also proven when applied on a more diverse
dataset of SEM images gathered from selected publications.

Conclusions: The outcome of our work shows that the amalgamation of an optimal network
design and augmentation strategies performs satisfactorily for defectivity analysis and is generic
for data not constrained to fixed settings.
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1 Introduction

The progressive scaling of transistors in semiconductor manufacturing demands cost-effective
lithographic techniques capable of smaller feature patterning with feature sizes below the 10-nm
scale. As potentially viable next-generation lithography candidates for features with line-space
(L/S) patterns, several techniques have been proposed; among these, extreme ultraviolet lithog-
raphy (EUVL) and directed self-assembly (DSA) are two of the most promising. EUVL is an
approach relying on patterning features using a short-wavelength light source of 13.5 nm,1

whereas DSA exploits the self-assembly behavior of block copolymers that undergo microphase
separation when coated on a wafer to create dense periodic features over large areas.2,3

Compared with EUVL, DSA has a lower cost of ownership because of the reduced number
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of processing steps, but it is less flexible in regards to print patterns with variable pitches.
In addition, one of the major challenges in applying DSA to high-volume manufacturing is
the observed defect densities, which are larger than the required defect density of 1 and
0.01 defect∕cm2 for memory and logic applications, respectively. The most commonly observed
defects are bridges and dislocations. Even EUVL is not free of defectivity issues, as noted in
previous work,4,5 and is shown to make bridge defects.

To address the concern of large defect densities, especially in DSA, various process opti-
mization steps are put into use to determine the important factors that can contribute to reduc-
tions in the overall defect density; optimization steps include varying annealing conditions,
periodicity of the surface pattern, width of the guiding line, topography of a pattern, and back-
ground chemistry, among others. For every combination of the listed processing steps, it is nec-
essary to perform defect inspections of scanning electron microscopy (SEM) images to evaluate
the performance of the processing conditions. This involves collecting large enough numbers of
SEM images for statistical purposes and performing defect detection either manually or using an
image processing tool. The manual labeling of defects becomes inefficient as the number of
different combinations of processing steps increases. One of the solutions is to use emerging
deep learning algorithms to detect and classify defects of different types. In the field of material
science, numerous algorithms have been applied to learn complex defective features from a given
set of images. For example, (1) Xie et al.6 used the multi-class support vector machine algorithm
to detect most regularly observed defects both in printed circuit boards and wafers; these defects
involve rings, semicircles, clusters, and scratches. (2) Zheng and Gu7 adopted the machine learn-
ing algorithm to detect the unknown number of multiple vacancies in graphene with high accu-
racy. (3) Tabernik et al.8 reported a study in which they applied segmentation-based deep
learning architecture to detect surface anomalies in finished products from the perspective of
certain industrial applications. The deep learning-assisted-identification of defects is not
restricted to the field of material science and has been used in various other fields for purposes
such as defect detection in sewer pipes9,10 and fruit defect detection.11 We believe that the use of
such automated methods for counting different types of defects, as well as specifying their loca-
tions in the line and space (L/S) patterns, could assist process engineers in quickly collecting
enough statistics and provide a more accurate and consistent method of evaluating each combi-
nation of processing conditions.

Generally, a large number of training samples are required to ensure high accuracy of the
network. Unfortunately, as mentioned earlier, the time-consuming process of labeling the defects
present in SEM images is demanding because of the required load of human effort and expertise.
This creates an impediment to collecting sufficient data for the desired precision of the deep
learning network. Data augmentation is one viable option to inflate the training dataset by
exploiting more information from the original dataset. As discussed in the review paper by
Shorten and Khoshgoftaar,12 augmentation strategies include geometric and color transforma-
tions, random erasing, and feature space augmentation. Flipping images, one of the easiest
and computationally cheapest strategies, combined with other geometric transformations of
cropping, rotating, and scaling is shown to improve the accuracy of the deep learning
algorithm.13,14 Another data augmentation method is to expand the dataset by performing sim-
ulations. Such a strategy is explored in the classification of astronomical events in Carrasco-
Davis et al.,15 in which the authors rely on a physics-based model to generate the simulated
dataset. In Ref. 16, when a simulated dataset generated with a point-scattering model for radar
image simulation as described by Holtzman et al.17 was mixed with a real dataset, there was a
boost in improvement to the accuracy of target recognition in synthetic aperture radar images
in ships.

In this work, with the use of a minimal SEM dataset for training [O(100) images], we use an
object classification and detection network inspired by the well-established version 3 of You
Only Look Once (YOLOv3)18 to predict the location and type of defects present in images.
The SEM dataset was collected after carrying out experiments using cylinder forming block
copolymers under shear-solvo annealing conditions.19 The numbers of convolutional layers and
filters in a network were optimized for the network’s accuracy. Further examination of various
activation functions and different loss functions was implemented. The initial dataset with a
limited number of SEM images was inflated using two strategies: (1) geometric transformation
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through flipping images horizontally, vertically, and horizontally followed by flipping vertically
and (2) augmentation with simulated images. The simulated images were obtained using a phys-
ics-driven theoretically informed coarse-grained (TICG) model20–22 that has been successfully
applied to describe experimental observations in block copolymer systems. Changes in the net-
work’s accuracy on expanding the initial SEM dataset of various sizes using the two aforemen-
tioned strategies were systematically investigated. Given the flexibility of customizing the type
and size of defects in simulated images, the importance of the distribution of the simulated
dataset was probed. Finally, the generalizability of our network was demonstrated by testing
it on a more diverse DSA dataset generated with various polymers, processing conditions,
or substrate’s guiding patterns and on L/S patterns from photo/EUV lithography collected from
publications.23–58

In Sec. 2, we briefly describe the type of detected defects studied in this work. For back-
ground, in Sec. 3, we discuss how the YOLO algorithm works and further describe the network
architecture used in this work. In Sec. 4, we provide details on the preparation of both exper-
imental and simulation datasets. Section 5 shows the results obtained in this work. In Sec. 6, we
provide concluding remarks, highlighting some future directions.

2 Types of Detected Defects

A deep learning network was developed to detect the most commonly observed defects in line
and space patterns. The defects include an edge dislocation (ED), dislocation pole (DP), dis-
location dipole (DD), and bridge. Postprocessed SEM images containing each of these defects
highlighted in dark yellow boxes are shown in Fig. 1 (details on the processing of SEM images
are given in Sec. 4.1). We refer to the black- and white-colored regions as regions filled with
polymeric species A and B, respectively, in the following explanation without the generality loss.
The DP consists of either the A or B domain terminated in the middle of the regular lamellar
domain, with distorted nearby planes of the internal AB interfaces. ED is similar to DP in that it
also has the A/B terminated domain; however, in ED one of the terminated ends connects with
the adjacent layer without distorting nearby planes as shown in Fig. 1. The pairs of DPs with
opposite Burger vectors constitute a DD. Note that individual DPs that make a dipole can be
single/multiple lamellae layers apart from one another. In the image shown in Fig. 1, the DD
defects are five lamellae layers apart. Bridge (B) defects, as shown in Fig. 1, occur when chains
of one BCP block propagate across a domain of the opposite block and form a “bridge” between
two nearby domains of the same block type.

3 Deep Learning Method for Detecting Defects

For defect detection, we used a deep learning framework influenced from the YOLOv3 devel-
oped by Redmon and Farhadi.18 YOLOv3 is an updated version of the YOLO algorithm that has
been successfully applied in autonomous driving, real-time detection of traffic participants,59

real-time unmanned aerial vehicles detection,60 breast mass detection,61 fruit detection,11 under-
water fish detection,62 and sewer pipe defect detection.9 It is an object detection algorithm that
predicts not only the type of object labels but also its location by drawing a bounding box

Fig. 1 Postprocessed SEM image for each type of defect: bridge (B), DP, ED, and DD. Red box
shows the location of the corresponding defect in the image.
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enclosing a given object. The algorithm is also capable of detecting multiple objects within an
image. In comparison with the other well-known object detection algorithms such as fast R-CNN
and faster R-CNN, in which the object detection is performed through extracting regions of
interest for the classification of objects, a predefined grid cell is used in YOLO to carry out
the object prediction, resulting in faster execution of the algorithm.

We begin with a high-level overview of the network/architecture used in this work. Similar to
YOLOv3, the entire network is branched into two major segments: multi-scaled feature extractor
and detector. As illustrated in Fig. 2, an input image is fed into the feature extractor first to realize
the feature embedding at three different scales. These embeddings are delivered to three sections
of the detector to get the classes to which the objects belong to and the object bounding boxes.

The feature extractor is marked with a red rectangular box in Fig. 2. A 416 × 416 sized input
feature vector is fed into the feature extractor composed of a series of convolutional layers with
the task of selecting features from prior layers by performing a convolution of input arrays. Each
convolutional layer is followed by batch normalization and a Leaky ReLu layer. The number of
filters for each convolutional layer is expressed in the units of F, where F is defined as the
number of filters for the first convolutional layer. The value of F is 32 in the original imple-
mentation of YOLOv3 and the filter dimensions are either 3 × 3 or 1 × 1. The stride value in the
convolutional layers is set to be one except when the feature vector is downsampled; the vector’s
dimension is reduced by half using a stride value of 2. The detailed layout of residual blocks
introduced in the feature extractor unit is shown in the top right of Fig. 2. Inside a residual block,
a 1 × 1 convolutional layer is followed by a 3 × 3 convolutional layer plus a skip connection.
Residual blocks are added to solve the gradient disappearance or gradient explosion problems in
the network, allowing for easier control of the gradient propagation and improved network train-
ing. To ensure that the important features are retained during the operation of downsampling/
condensing the feature vector, the number of residual blocks are increased as we go deeper into
the network. In this work, the number of residual blocks at the initial stage of the network is set to
its minimum value of 1 (the same as YOLOv3), and in the latter stages, it is expressed in R units;
the R value of 2 is used in YOLOv3. In Sec. 5, we find the optimal F and R values through an
exploratory study in which we methodically vary F and R values and compare the accuracy of
the network for defect detection.

Just like YOLOv3, the network implemented in this work is designed as a multi-scale detec-
tor. Three 52 × 52, 26 × 26, and 13 × 13 dimensional feature vectors are obtained as an output

Fig. 2 The architecture of our network. Similar to YOLOv3, the entire network is branched into two
major segments: the multi-scaled feature extractor enclosed in the red box and the detector
enclosed in the green box. The feature extractor realizes the feature embedding at three different
scales (13 × 13, 26 × 26, and 52 × 52); these embeddings are then delivered to three sections of
the detector to get the classes to which the objects belong and the object bounding boxes.
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from the feature extractor and are supplied to the detector. The detector, which is shown inside a
green box in Fig. 2, has multiple 1 × 1 and 3 × 3 convolutional layers and a final 1 × 1 convolu-
tional layer. The feature vectors at medium and small scales are concatenated with the previous
scale feature vectors as an upsampling operation, allowing small-scale detection to benefit from
the result of large-scale detection. The final output of the detector is a tensor augmented with
the outputs of three different scales in the shape of [(52,52, 3, (4þ 1þ Nc)), (26,26, 3,
(4þ 1þ Nc)), and (13,13, 3, (4þ 1þ Nc))], where Nc is the number of object classes. (In this
work, it is the number of different types of defects with a value of 4.) Before we explain the
values embedded in each of three entries in a detector tensor, it is essential to introduce the
concept of the anchor box in Fig. 3.

The object detection algorithm aims to serve the dual purpose of correctly predicting a
bounding box of a given object and its class. The notion of grid cells is now introduced, and
these are constructed by dividing the image into 13 × 13, 26 × 26, or 52 × 52 square matrices.
For each grid cell, our network predicts three bounding boxes. A bounding box is represented by
four variables defined as xmin, xmax, ymin, and ymax; all four values are normalized with respect to
the image’s size (416). Due to the large variance in scale and aspect ratio of ground truth boxes,
learning the bounding box variables through random initialization is highly inefficient.
Therefore, in Ref. 18, an anchor box is used instead of performing bounding box detection from
the random initial guessing. Anchor boxes with different aspect ratios are predefined by k-means
clustering on the entire dataset. During the training, our network bounding box is searched by
predicting offsets against the anchor boxes. The formulas to obtain the normalized real coor-
dinates of the predicted bounding boxes from the location offsets are given in Fig. 3. As three
scales of grids are used, we have a total of 52 × 52 × 3, 26 × 26 × 3, and 13 × 13 × 3 predicted
bounding boxes. For each predicted bounding box, three essential attributes are trained as
follows.

(1) Four values for the location offset against the anchor box are defined as tx, ty, tw, and th.
(2) Objectness score is the probability that a given grid cell does or does not contain an

object.
(3) Class probabilities of the object belong to each class out of a total Nc classes.

In total, 4þ 1þ Nc values are obtained for each of the three predicted bounding boxes at
three different scales, which explains the shape of the output tensor from the detector.

The total loss function, which calculates the loss of the output from the detection unit against
the ground truth labels, is composed of three terms: bounding box, objectness, and the

Fig. 3 Prediction of the bounding box attributes. x and y center coordinates of the predicted
bounding box are given by bx and by , respectively, and width and height are given by bw and
bh, respectively. The values cx and cy are the top left corner coordinates of a grid cell containing
the center of the object. The relations between predicted bounding box and predefined anchor box
width and heights (pw and ph are anchor box width and height, respectively) are shown in orange.
In the equation for the center of coordinates for the bounding box, σ represents the sigmoid
function.
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classification loss. For a complete mathematical description, we refer readers to Redmon and
Farhadi.18 In this work, generalized intersection over union (GIoU) loss is used for bounding box
predictions, and it is shown to have a faster convergence and better accuracy than a simple inter-
section over union (IoU) loss.63 Here IoU is the ratio of the area of intersection between two
boxes over that of the union of those boxes. The focal binary cross entropy (FCE)64 is used for
objectness loss, and cross entropy (CE) loss18 is used for classification loss. During the predic-
tion, we keep the bounding boxes with high objectness scores (>0.5). To eliminate the predicted
bounding box duplicates, an algorithm named non-maximum suppression, which is explained in
detail by Hosang et al,65 is applied.

4 Data Collection

This section provides the details on how we acquired data used for training and testing the net-
work. Two types of datasets, one from experimental SEM images and the other from performing
Monte Carlo simulations, were collected.

4.1 Experimental Dataset

The experimental dataset of 575 L/S pattern SEM images was acquired by performing experi-
ments on cylinder-forming block copolymers. The experimental protocol details are published in
a previous paper by Kim et al.19 In summary, once block copolymers are spin coated, the dual
processing steps of shear alignment and solvent vapor annealing (SVA) in sequence were per-
formed. The shear aligned BCP thin film obtained by applying shear stress with a cured poly-
dimethylsiloxane pad undergoes SVA treatment in a glass chamber at room temperature. The
treated BCP thin films were characterized using SEM (Hitachi S-4800) with an operation energy
of 5 keV and a working distance of 3 mm. For successful defect detection, samples obtained
under experimental conditions that left several defects were used for SEM image collection.

Raw SEM images are processed to remove the noise and blurriness by applying two of the
most commonly used image processing steps: digital unsharp mask filtering and Gaussian blur
filtering (filters loaded from the PIL python library). The flowchart for refining raw SEM images
is described in Fig. 4. The digital unsharp mask filtering is characterized by three variables:
(1) blur radius, which serves the purpose of blurring an image by setting each pixel to the average
value of the pixels in a square box extending the radius pixels in each direction, (2) unsharp

Fig. 4 Flowchart for the processing of raw SEM images. The raw images are first processed to
remove noise and blurriness by applying digital unsharp mask filtering and Gaussian blur filtering.
To expand the number of images during network training, the three operations of HF, VF, and H-
VF are performed as shown under the data augmentation block.
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strength in percent, which controls the magnitude of how much darker or brighter the pixels will
be made, and (3) threshold parameter, which prevents the filter from sharpening the image unless
the difference between adjacent pixels is large enough. Gaussian blur uses a blur radius defined
above as its only parameter. The values of blur radius, unsharp strength, and threshold parameter
in this work are 2, 10, and 500, respectively. After exploring the different sequences of appli-
cation of the two filters, a filtering sequence of (1) Gaussian blur, (2) unsharp mask, (3) Gaussian
blur, (4) unsharp mask, and (5) unsharp mask gives the non-blurred image without losing impor-
tant features present in it. Figure 4 compares the original SEM image and the processed
SEM image.

The number of images in the training dataset is expanded through performing the three oper-
ations of horizontal flipping (HF), vertical flipping (VF), and horizontal followed by vertical
flipping (H-VF) as shown in Fig. 4. The defects present in the refined SEM image dataset are
manually annotated by classifying them into four different categories of DP, ED, DD, and B as
described in Sec. 2 [see Fig. 5(a), which shows drawn bounding boxes enclosing defects]. SEM
images are rescaled to an input layer size of 416 × 416 pixels. By padding with the pixel value of
128 (in gray), the aspect ratio of a given image is unperturbed during the image rescaling. Our
SEM image dataset contains 2059 defects with the percentage of each type of defect shown in
Fig. 5(b); the minimum and maximum numbers of defects per image are 0 and 19, respectively.
Note that the number of ED and DD defects in our dataset is an order of magnitude smaller than
that of the B and DP defects. The prepared dataset has a vast range in the spacing between
adjacent black/white lines, which is also defined as the pitch in L/S patterns. The pitch size
ranges from a minimum value of 6 to a maximum value of 72 pixels, with an average value
of 18; this prevents the network from overfitting.

4.2 Simulation Dataset

To prepare a simulation dataset, we use TICG combined with Monte Carlo simulations.20–22 This
model has been rigorously studied and validated with available experimental data for copolymer
thin films. The TICG model is a particle-based coarse-grained model that adopts a representation
in which each polymer chain is represented by a number of coarse-grained beads N. Here we
only recall the model’s main characteristics to simulate our system of interest. All n A-b-B block
copolymer chains in our system are in a constant volume and constant temperature environment
and are discretized into N beads. The bonded interactions of polymer chains adapting a Gaussian
random-walk configuration of coarse-grained polymer beads is represented by harmonic springs
attached between adjacent beads in a given chain. The total harmonic potential at a given temper-
ature is then defined as

Fig. 5 (a) Top and bottom are the sample representative processed SEM images with annotated
defects. Bridge (B), DP, ED, and DD are marked in green, dark pink, blue, and yellow, respectively.
(b) Distribution of each type of defect in the whole SEM dataset.
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where bkðiÞ is a vector connecting the i’th and (iþ 1)’th beads in a chain k, Re is the mean-
squared end-to-end distance for an isolated non-interacting chain, and kb is the Boltzmann con-
stant. The non-bonded interactions are functional of local densities ϕAðrÞ and ϕBðrÞ and are
given by
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where the first term represents the incompatibility between A and B beads and is a function of the
Flory–Huggins parameter χ. The second term, which is derived from the Helfand quadratic
approximation, is the energy penalty due to the deviation of local bead densities away from
its average value in a nearly incompressible dense polymer melt, and it is a function of the

incompressibility parameter κ. The term
ffiffiffiffi
N

p
is an interdigitation parameter that provides an

estimate of the number of chains with which a given chain interacts. The values of N, κN,

χN, and
ffiffiffiffi
N

p
used are 32, 50, 23, and 128, respectively.

To calculate the Hnb, the local densities must be inferred from the beads’ positions. A com-
monly used “particle-to-mesh” technique is applied: we split the simulation box into M number
of cubic grid cells and estimate the densities of the species in these grids. The grid discretization
length is defined as ΔL, and its value is fixed as 0.16Re in this work. The implementation details
are discussed by Detcheverry et al.22 Density fields of α species in a grid cell p are defined as

EQ-TARGET;temp:intralink-;e003;116;452ϕαðpÞ ¼
R3
e

ΔL3N
ffiffiffiffi
N

p
XnN
i¼1

δðri − rðpÞÞδαtðiÞ; (3)

where summation runs over all beads and α ∈ fA; Bg. tðiÞ denotes the species of bead i. The
delta function here represents that each bead is assigned to its nearest grid cell and contributes to
density ϕαðpÞ.

Using the TICG model, Monte Carlo (MC) simulations are performed under the NVTensem-
ble. Two types of MC moves are used: single-bead displacement and reptation of chain. The
maximum bead displacement size is set as 0.8b, where b is the mean squared bond length
of an ideal chain of N beads. The maximum value used of reptated bead in a chain is 5. In
this work, an MC cycle is defined with nN þ 2n number of MC moves, where on average
nN bead displacement moves and 2n reputation moves are performed. The dimension of the
simulation box in the x and y directions is chosen to be 10L0, where L0 is the natural periodicity
of lamellae in the AB diblock system (L0 is 1.6Re). The box dimension in the z direction is 1L0.
Periodic boundary conditions are applied in the x and y directions, whereas a hard wall condition
is used in the z direction.

Defects are generated by introducing a spatially varying external field in the simulations. The
field applies interactions to beads of type α at a given position r, characterized by λαNðrÞ, such
that it can generate the desired defects. Figure 6(a) shows the illustration of an applied field for
two-layer apart DD; the black and white represent the attractive field for A and B beads, respec-
tively. We simplified the geometric factors in applied fields by implementing two-tone 2D fields
varying in the x and y directions only. In the A-rich (white) region, λANðrÞ and λBNðrÞ are set to
be −5 (attractive) or 5 (repulsive), respectively, and vice versa for the B-rich (black) region. As
shown later, following relaxation simulations leads to the formation of metastable defective mor-
phology with three-dimensional variation in density fields. Hence, for DD defects, four variables
ddi are used to define the geometry of DD and to introduce a randomness in the shape. Keeping
the external field for defects generation on, AB diblock copolymers are self-assembled over 1000
MC cycles, which are enough to generate the required defect. We then switch off the external
field and let the system equilibrate for an additional 500 MC cycles; this relaxation step is chosen
to be long enough to reach metastable defective structure while not too long as to annihilate these
kinetically trapped defects. A total of 1000 dislocation defects with random center locations was
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generated. For every image, values of geometry factors in the external field are randomly chosen;
the values of dd1 (dd2 ¼ 0.05dd1), dd3 and dd4 are randomly chosen from 1.0 to 1.5, 0 to 0.06,
and 0 to 0.06 (in the units of L0), respectively.

One thousand ED defects are generated using a similar procedure [see Fig. 6(b) for the sketch
of the applied external field with geometric variables edi, i from 1 to 4]. The values of ed1
(ed2 ¼ 0.05ed1 and ed4 ¼ ed1) and ed3 are randomly selected from ranges of 1.0 to 1.5 and
0 to 0.06 (in the units of L0), respectively. Since ED has a lower kinetic energy barrier than DD,
there are more quickly annihilated defects for the same period of relaxation simulation; these are
not added to our simulation dataset while training the network.

Bridge (B) defects are generated by applying an external field shown in Fig. 6(c). Unlike DD
or ED, all bridge defects annihilate right after switching off the external field. As discussed in
detail in Delony et al.,66 experiments and simulations have still not fully resolved the origin of the
bridge defect. Therefore, we use a different procedure to stabilize the bridge defects. After the
initial 1000 MC cycles, the external field is switched off only for regions where the bridge defect
is not located, and field strength on bridge defect regions are weakened to λαNðrÞ ¼ 2 or −2. A
total of 1000 randomly placed bridge defects with varying sizes is generated using this pro-
cedure. The width of bridge b1 in Fig. 6(c) is randomly selected from values ranging from
0.4 to 0.8L0. In addition, 1000 fully ordered morphologies are prepared using a defect-free exter-
nal field.

The equilibrated configuration obtained is mapped into the normalized order parameter SðpÞ
at each simulation grid cell p:

EQ-TARGET;temp:intralink-;e004;116;181SðpÞ ¼ ϕAðpÞ − ϕBðpÞ
ϕAðpÞ þ ϕBðpÞ

; (4)

where ϕAðpÞ and ϕBðpÞ are densities of A and B in a simulation grid cell. A grayscale image is
generated using a linear mapping between SðpÞ and the grayscale index. SðpÞ ¼ 1 (A-rich) has a
grayscale index of 1.0 (white), and SðpÞ ¼ −1 (B-rich) corresponds to a grayscale index of 0
(black) with SðpÞ ¼ 0 pointing to a grayscale index of 0.5. The field-off image is then annotated
by drawing a bounding box around the defect. Note that the annotation procedure is automated
as we already know the location of the defect from the applied external field. Annotated raw

Fig. 6 Applied 2D external field along the x and y directions to generate defects through MC
simulations (top) and zoomed views of defects (bottom) focusing on (a) DD, (b) ED, and (c) B
defect types.
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grayscale images that are defect-free or with a single defect are postprocessed as described in
Fig. 7 to generate a larger image that has many defects. Multiple images are stitched in a matrix
fashion with a randomly chosen dimension of ðnx; nyÞ, where nx is the number of images stitched
horizontally and ny is the number of images stitched in the vertical direction. The maximum
value of nx and ny is 8. Every stitched image contains a random number of defects ranging
from 0 to 20. For illustration, Fig. 7 shows an image with nx ¼ 2, ny ¼ 2 and 3 defects, obtained
from combining four raw simulated images. The image boundaries are then randomly cropped
out while preserving the region where defects are located. The cropped image undergoes two
different types of image modification without perturbing the size of the image: random flipping
and line width variation. Random flipping is performed by generating a random number in the
interval 0 to 3, where 0, 1, 2, and 3 represent the operations of no-flipping, H-F, V-F, and HV-F.
The width of black/white lines is adjusted by changing the relation between order parameter
SðpÞ and grayscale index. The modified SðpÞ to grayscale index map now has the values of
0, 0.5, and 1 corresponding to SðpÞ values of −1, f, and 1, where f is a randomly chosen value
from an interval ð−0.6; 0.6Þ. When the value of f is negative, black lines are thinner, and when it
is positive, black lines are thicker (see Fig. 7). The processed simulated images are made ready
for network training by rescaling them to an input layer size of 416 × 416 pixels while keeping
the aspect ratio the same.

5 Results

We trained and evaluated the performance of the network on detecting and classifying defects in
experimentally obtained SEM images. A total of 575 raw SEM images before augmentation
through flipping was collected and annotated. As our study targets running the network with
a small number of images available for a training set, we used only 100 SEM images for the
training set (SEMD100) and 475 SEM images for the test set; SEM images for training were
randomly selected from the entire dataset and had 144 B, 184 DP, 22 ED, and 27 DD with a total
of 377 defects. The data augmentation as described in Fig. 4 was performed on the training
dataset. By performing the three flipping operations on each image while retaining the original
image, the augmented SEM dataset (Aug-SEMD100) has four times the number of images (400)
as the SEM dataset (SEMD100). During the training, a batch size of 32 and learning rate with a
cosine decay are used. For the first ∼300 batch iterations, the learning rate was ramped up to a
value of 1 × 10−3. Then a cosine function was used to decay the learning rate to 1 × 10−8 in the
next ∼4200 batch iterations. The width and height of nine prior bounding boxes/anchor boxes
(three boxes for each detection scale) are taken from the pretrained YOLOv3 network used on
the COCO dataset;18 specifically the values in pixels of (width, height) of anchor boxes arranged
in ascending order of their areas are (10, 13), (16, 30), (33, 23), (30, 61), (62, 45), (59, 119), (116,
90), (156, 198), and (373, 326). YOLOv3, when it is used for more than 80 different classes, uses
an architecture shown in Fig. 2 with F and R values of 32 and 2, respectively, and it demands
close to 60 million trainable parameters. Aiming to reduce the number of trainable parameters for

Fig. 7 Flowchart for the processing of images obtained from TICG simulations. Multiple defect-
free and single-defect images are stitched together to generate a larger image that has many
defects. Image with nx ¼ 2, ny ¼ 2, and 3 defects, obtained from combining four raw simulated
images is shown. The image boundaries are then randomly cropped out while preserving the
region where defects are located. The cropped image undergoes two different types of image
modification, namely random flipping and line width variation.
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our system with only four objects to be classified, the network is trained and tested for different R
and F. The average precision (AP) for each defect and the mean of all Aps, termed the mean
average precision (mAP), were used as metrics to evaluate the performance of our network. The
AP is derived from the quantities’ precision and recall; details of the equations to calculate the
AP and mAP are provided by Everingham et al.,67 where precision and recall are defined as
follows:

EQ-TARGET;temp:intralink-;e005;116;663precision ¼ TP

TPþ FP
; (5)

EQ-TARGET;temp:intralink-;e006;116;610recall ¼ TP

TPþ FN
; (6)

where TP (true positive) represents the number of correctly identified defects, FN (false negative)
is the number of defects that the network is unable to detect, and FP (false positive) is the number
of defects incorrectly predicted. If the value of IoU is >40%, where IoU is calculated between
detected bounding box and ground truth bounding box, the prediction is TP; otherwise, it is
classified as FP.

Figure 8(a) shows the AP for each defect and mAP averaged over five independent training
runs starting with different random seeds, where R is set to its minimum possible value of 1 and
F value is varied from 2 to 16. For comparison, we also show the individual APs and mAP
obtained from the network trained on the dataset without any augmentation (SEMD100).
For all filter values, augmentation through flipping significantly improves the APs of each defect
type (e.g., 64.6 using Aug-SEMD100 as compared with 39.2 using SEMD100 for F ¼ 12). In

Fig. 8 Performance indices of the networks trained with SEMD100 and Aug-SEMD100 (aug-
mented with flipping operations) datasets. (a) AP for each defect and mAPwhen the network archi-
tecture is varied with the minimum number of convolutional layer filters F of 2, 4, 8, 12, and 16
while fixing the minimum number of residual blocks R at 1. Two training datasets of SEMD100
consist of 100 images out of the available 575 SEM images acquired from experiments and Aug-
SEMD100 in which SEM100 is augmented with flipping operations into 400 images. (b) The same
performance metrics shown for the network with R values of 1, 2, 3, and 4 and with F fixed at 12.
The networks were trained with Aug-SEM100.
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addition to the fourfold increase in the number of defects in the augmented dataset, flipping also
increases the randomness in the bounding box center location of the target defect, which effec-
tively prevents the model from overfitting to a specific localized spatial position. However, even
with the use of Aug-SEMD100, AP values for ED and DD are much lower than those of B and
DP due to the lower number of these defects (88 ED and 108 DD defects as compared with 576 B
and 736 DP defects). Henceforth, we use the B and DPAP values as a metric to select the optimal
value of F. AP values of B and DP increased with F until 12 and then plateaued around 85% and
90%, respectively. Thus the optimal value for F is 12 in our case. Fixing F at 12 as we increase R
increases the number of convolutional layers in the feature extractor unit (28 layers for R ¼ 1

versus 96 for R ¼ 4). But as shown in Fig. 8(b), the APs of B and DP stay around the values
obtained for R ¼ 1. Therefore, F ¼ 12with the minimum possible value of R ¼ 1was chosen as
our optimal combination. Compared with the original implementation of YOLOv3, the number
of trainable parameters for our network is close to 6 million, which is an order of magnitude (∼10
times) smaller than the original implementation of YOLOv3. Also using R ¼ 1, the number of
convolutional layers in the feature extractor unit of our network is 28 as compared with 48 in the
original YOLOv3.

For F ¼ 12, we further explored various activation functions and different loss functions
used for training the network, while using APs for B and DP as our performance indices.
We started with two commonly used assortments for objectness loss (which optimizes the prob-
ability that a given grid cell has an object or not: probability value either 0 or 1): binary CE and
FCE loss. The network with FCE loss resulted in better performance than with CE loss as shown
in Fig. 9 with AP values for B and DP using FCE of 86% and 91%, respectively, as compared
with 82% and 85%, respectively, for CE. As mentioned in Sec. 3, for every image, our multi-
scale network generates a total of Oð104Þ (13 × 13 × 3þ 26 × 26 × 3þ 52 × 52 × 3 ¼ 10;647)
bounding boxes per image. Most of these boxes are marked on the background (straight lamellae
lines) since our dataset has an order of 10 defects per image at maximum while the remaining
area is background. When CE loss is implemented, a significant portion of objectness loss may
be attributed to the background region, whereas FCE loss ensures that objectness loss is domi-
nated by the few true objects in the network; therefore, FCE loss excels over CE loss in our case.

Complete intersection over union (CIoU) loss and use of the Mish activation function are
shown to have a better convergence and accuracy than a network with GIoU loss and the Leaky
ReLU activation function (for their definition and implementation details, see Refs. 68 and 69).
However, for our system, Fig. 9 shows that there is no significant gain in the APs for B and DP in
modifying our network to use the Mish activation function and CIoU loss. The APs of B and DP
for GIoU versus CIoU and Mish versus Leaky ReLu are within 1% of each other. Here it is worth
noting that that the AP of ED increased with the use of the Mish activation function, but the
fluctuations (error bars) in its value are too large to claim any significant proclamations.

Although the use of a combination of GIoU loss, FCE loss, and Leaky ReLU activation
function with F ¼ 12 increases the performance of the network, the mAP of our network is

Fig. 9 AP for each defect and mAP of the network when different varieties of objectness loss,
bounding box loss, and activation functions are used. The training dataset for all cases is the
Aug-SEMD100 dataset. On the top, two types of objectness loss are compared: FCE and CE
loss. In the middle, bounding box losses of GIoU and CIoU loss are tested. On the bottom, results
of using different non-linear activation functions of Leaky ReLu and Mish are shown.
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still close to 65%, due to the limited numbers of SEM images available even after flipping oper-
ations. To address the issue, we performed a further data augmentation in which we added
images generated using molecular simulations to the training dataset. The time-consuming proc-
ess of annotating objects in experimental data is bypassed when using simulated images with
automated labeling of defects. Simulated datasets can be prepared as large as needed, as each
simulation takes only an O(10) min for completion. Given the flexibility of customizing the size
of simulated defects through random cropping (see Fig. 7) and rescaling cropped images to the
416 × 416 sized input layer without modifying the aspect ratio, we prepared two different simu-
lated datasets: (1) the “distribution match” (DM) dataset, which has a similar width (W) and
height (H) distribution as the SEM dataset, and (2) the “distribution mismatch” (DMM) dataset
in which the defect size distribution of the simulated dataset is mismatched from the SEM data-
set. For DM dataset preparation, we randomly select an image from the prepared simulated data-
set and measure its diagonal length in units of pixels (square root ofW2 þH2). Depending on the
defect’s size diagonally, it is sorted into evenly divided bins at a resolution of 7 pixels. The above
operation is iteratively performed until the binned histogram of selected simulated images
matches that of the SEM dataset. Performing this procedure of matching the diagonal length
of the bounding boxes gives W and H defect distributions that have a strong overlap with the
SEM dataset as shown in Figs. 10(a) and 10(b). For the DMM dataset, we only choose images
with very large defects, with W and H values that are approximately above 100 pixels; this
results in a distribution with only a small overlap with the SEM dataset distribution [see
Figs. 10(a) and 10(b)]. S number of simulated defects are randomly selected from either
DM or DMM datasets and mixed with Aug-SEMD100 (1508 total defects) for training; our
test set remains unchanged. Keeping the remaining conditions and parameters identical, training

Fig. 10 (a) Width and (b) height distributions of bounding boxes in a DM dataset of simulated
images containing defects that match the SEM dataset distribution, and DMM dataset of simulated
image defects that mismatch the SEM dataset distribution. (c) Performance (mAP) variation as the
network is trained with mixed datasets obtained by varying mixing ratios of defects in Aug-
SEMD100 with simulated defects, from both DM and DMM. x axis marks the total number of
defects in simulated images that are added to the Aug-SEMD100 dataset.
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and testing of the network are performed; Fig. 10(c) shows the obtained mAP versus S. Even
mixing with images from the DMM dataset with mismatched defect size, mAP increases on
increasing S; the maximum value of obtained mAP is around 73%. Nevertheless, for S values
beyond 6000, mAP starts to diverge since the network trained with large defect sizes overfits the
bounding boxes with minimal overlap with the SEM dataset. With mixing of images from the
DM dataset, mAP also increases. As the defects’ sizes of the DM dataset, overlap with those of
defects in the SEM images, a further increase in the value of S does not hamper the performance
of the network as much as is seen with the DMM dataset; the maximum mAP is around 81%,
which is 8% higher than the maximum value obtained by mixing images from DMM. Therefore,
the trends observed using the DM and DMM datasets show that it is important to have a sim-
ulation dataset with defect size distributions that overlap with the SEM dataset when the training
data set covers a vast range of samples.

When the network is trained with a mixture of ≈6000 simulated defects from both the DM
and Aug-SEMD100 datasets, a mAP value of 81% is achieved. The mAP is significantly
improved using the data augmentation strategies of both flipping and mixing with simulation
images (from 39% to 81% using both strategies). The individual AP bar graph for the network is
shown in Fig. 11(a). The individual AP values for B and DP are above 90%, whereas those of ED
and DD are around 70%. As mentioned, the number of B (144) and DP (184) defects in our non-
augmented SEMD100 dataset is an order of magnitude larger than ED (22) and DD (27) result-
ing in a better trained network with larger AP values; still, APs of ≈70% for both ED and DD
with only 22 and 27 SEM defects used for training is more than adequate, signifying the
excellence of our network when trained through augmented data. The network’s predictability
in accurately locating and classifying the defects is portrayed in Fig. 11(b) with two represen-
tative images in which all defects are detected and correctly classified. The confusion matrix,
precision, recall, and F1 score of the run resulting in the best mAP out of five independent runs
are also shown in Table 1. The F1 score is defined as the mean of precision and recall. The F1

score averaged over all defect types has a high value of 84.5%. Similar to the trend observed in
individual AP values, F1 scores for B and DP are higher than for ED and DD. The diagonal
entries of the confusion matrix represent the correctly classified defects, whereas the off-diago-
nal entries represent the fraction of defects that were classified incorrectly into another category.
The small off-diagonal values of the confusion matrix for all defects show that our network
performs the classification very effectively and feature differences among defects are sufficiently
visible and distinct enough to avoid any significant classification errors.

To this point, we have shown the performance of the network trained with 100 SEM images
out of a total of 575, which only accounts for ≈17% of the available dataset. We further inves-
tigate improvements in mAP using the data augmentation strategies for different numbers of
original SEM images in the training dataset. SEMD200 and SEMD300 training datasets with
200 and 300 SEM images, respectively, were prepared. The SEMD100 dataset was appended to
create the SEMD200 dataset by randomly extracting another 100 images from the 475 residual

Fig. 11 (a) AP for each defect and mAP of the network trained with a mixture of ∼6000 simulated
defects from DM and Aug-SEMD100 datasets. (b) SEM images with bounding boxes predicted by
the network. The predicted bounding boxes of B, DP, ED, and DD are marked in green, dark pink,
blue, and yellow, respectively.
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images of the original dataset; an identical operation is performed to make SEMD300 from
SEMD200. From the entire dataset, the operations to make SEMD200 and SEMD300 leave
us with 275 remaining images for our test dataset. Even with 275 images, our test dataset has
O(1000) defects, which is large enough to make statistically significant assertions. Figure 12
shows the enhancement in mAP through data augmentation versus the number of SEM images
(M) for SEMD100, SEMD200, and SEMD300 datasets. To make a valid comparison among the
obtained results for differentM, a fix test dataset of 275 images as described earlier is used for all
cases. Approximately 6000 simulated defects are segmented via the DM dataset. In all three
cases, the data augmentation helps to increase mAP. However, the gain in mAP is more pro-
nounced when the number of SEM images available for training is smaller. On both flipping and
mixing with simulated images, the mAP increases about 40.9% for M ¼ 100 compared with a
gain of 29.7% for M ¼ 300.

The capacity of our network can be broadened by implementing our network to a more
enriched database of DSA with various processing conditions such as block copolymers,
annealing temperature, types of substrate and guiding stripes, or line-space patterns from differ-
ent lithography techniques such as EUV lithography. Such a diverse database is prepared by
obtaining SEM images from selected publications23–58 with defects belonging to one of the four
categories classified in this work. Fifty-eight images were obtained with a total of 271defects in
the prepared “Journal-SEM” database (JSEMD) of including 39 B, 151 DP, 10 ED, and 71 DD
defects. (Note that images are processed to remove blurriness using a similar procedure as

Fig. 12 Variation in mAP on changing the number of SEM images (M) selected to construct non-
augmented training datasets. The mAP variation for networks trained using three different data-
sets is compared: (1) SEMD only, (2) SEMD is augmented with flipping (Aug-SEMD), and
(3) SEMD is augmented with both flipping and mixing of simulation images (DM + Aug-SEMD).

Table 1 Confusion matrix of the detected defects (in percentages) for the network trained with a
mixture of ∼6000 simulated defects in the DM dataset and Aug-SEMD100. Precision, recall, and
F 1 score for each type of defect are also shown as the last three columns of the table.

Predictable labels

TotalB DP ED DD Precision Recall F 1 score

True labels B 90.2 1.0 0.9 0.0 684 90.2 90.2 90.2

DP 0.0 90.7 0.4 0.0 788 90.2 90.7 90.5

ED 3.8 5.0 82.5 0.0 80 74.2 82.5 78.3

DD 0.0 1.5 3.1 74.6 130 83.6 74.6 79.1

Total number of defects 1682 Average 84.5
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described in Sec. 4.1.) A relevant consideration is whether our network trained using a dataset of
SEM images under fixed experimental conditions is transferrable to perform the classification
and detection of defects on the prepared diverse JSEMD dataset. Therefore, with JSEMD as our
test dataset, we applied our network trained with the use of the Aug-SEMD100 dataset and
∼6000 defects from the DM dataset. The extent of overlap between the defect size distributions
of the JSEMD and DM datasets is much more pronounced in comparison with the DMM dataset
[see Figs. 13(a) and 13(b)], justifying our choice of using DM for training dataset augmentation.
In Fig. 13(c), we compare mAP when the networks are trained on Aug-SEMD100 mixed with
either DM or DMM datasets and tested on JSEMD. A high mAP value of 77% obtained when the
DM dataset is used for augmentation shows the network’s robustness toward different exper-
imental designs targeting line-space patterns. However, a much smaller mAP value of 62% with
the ≈6000 defect DMM dataset was obtained, highlighting the importance of overlap between
size distributions of simulated defects and defects from SEM images. Our optimal network
design and data augmentation strategies enable the network to have satisfactory transferability
and to be generic enough to perform the L/S pattern defectivity analysis on data not constrained
to fixed settings and unseen by the network.

6 Conclusion

We adopted YOLOv3, a well-known object detection/classification network for defect inspec-
tion of line-space patterns on block copolymer films. Although the architectural layout of the
network is fixed to be the same as YOLOv3, the network variables such as filter size and number
of residual blocks were chosen based on the convergence in the network’s performance, rep-
resented by AP for individual defects and by mAP. Our optimized network has ∼6 million train-
able parameters, which is an order of magnitude smaller than the original implementation of
YOLOv3. The number of convolutional layers in the feature extractor unit of our network is

Fig. 13 (a) Width and (b) height distributions of defects from the database (JSEMD) from SEM
images in selected publications. The corresponding distributions for defects obtained through sim-
ulations under DM and DMM datasets are also shown. (c) Using JSEMD as a test dataset, the
performance (individual APs and mAP) of networks trained using the Aug-SEMD100 + DM and
Aug-SEMD100 + DMM datasets.
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also reduced at 28, compared with 48 in the original YOLOv3. We found that FCE loss excels
over CE loss whereas GIoU versus CIoU loss and Mish versus Leaky ReLu activation functions
performed similarly.

Under the condition of a limited dataset, the training of the network is performed by inflating
the data using two different data augmentation strategies. Strategies of flipping images and mix-
ing of simulated images greatly enhanced the performance of our network. With the use of only
100 (M) images accounting for 17% of the SEM dataset for training, a mAP of ∼81% was
obtained using the augmentation strategies. Increasing the value of M further increased the
mAP; mAP of 89% was observed for M ¼ 300. However, the gain in mAP is higher when
M is smaller; on both flipping and simulation mixing, the gain of 40.9% for M ¼ 100 was
obtained as compared with the gain of 29.7% forM ¼ 300. The network trained with a simulated
dataset with defect size distributions that overlap with the SEM dataset was shown to have a
better performance than the dataset with a negligible overlap, and this highlighted the importance
of selecting the optimal range of defect sizes present in simulated images. Although the exper-
imental images need to be manually annotated, our data augmentation strategies bypass such a
time-consuming process as (1) the defect locations in flipped images are mathematically derived
from the original images and (2) defect locations in simulated images are already known as we
precisely have the geometry of defect generating external fields while running the simulations.

The aforementioned results were obtained from an experimental database that is restricted to
particular fixed processing conditions applied on cylinder forming block copolymers. However,
the generalizability of our trained network was demonstrated by testing it on a more diverse
dataset (JSEMD) prepared by gathering SEM images from selected publications. This dataset
varies in many processing conditions including annealing temperature, photo/EUV lithography,
and different types of substrate patterns to direct the line-space assembly. The network trained
with the N ¼ 100 augmented dataset was tested on JSEMD, and a high mAP value of 77% was
obtained. This demonstrates the robustness of augmentation strategies, especially that of mixing
simulation images, toward different experimental designs targeting line-space patterns.

As discussed, the use of these data augmentation strategies helps the most in increasing the
performance of the network when the number of real images (non-augmented SEM images) is
smaller. With only 300 real images in the training set, data augmentation strategies result in a
network having almost 90% accuracy. This is impressive given that our network is not only
doing the classification of multiple defects per image but also performing their detection, which
involves estimating the location, width, and height of defects. Also it is notable that the number
of trainable parameters of our network is considerably smaller than YOLOv3, making it faster to
train and test. We believe that there are two ways of further increasing the accuracy of our net-
work. One obvious way is to increase the number of real images in the training set. Another is to
improve the quality of our simulation dataset that is mixed with the SEM dataset. One of the
limitations of the simulation dataset is that the external fields having perfect line-space patterns
(as shown in Fig. 6) generate defects that fail to replicate the line edge roughness (LER) and
tilting of lines observed in the experimental images. The LER and tilting of lines can be reflected
in the simulated images by modifying the values of simulation parameters, which are kept con-
stant in this work. For example, different χN values can prepare a simulation dataset with images
having different LER values. Instead of modifying simulation parameters, one could use the
novel sampling strategy proposed by Ma et al.,70 in which the fusion of SEM and simulation
data based on transfer learning is performed using generative adversarial networks. In this
approach, the information in an SEM image is transferred to the simulation image to generate
a synthetic image of better quality, i.e., an image containing important features found in the real
image. Our attempts to use this novel strategy are already underway and will be published in a
future study.

In the future, our work will aim to extend the deep learning model in ways that also estimate
the LER and line width roughness (LWR) along with defect classification and detection.
Recently, work by Chaudhary et al.71 used a group of neural networks to measure the LER and
LWR of SEM images. The unification of their proposed network with our network will provide a
more complete machine learning tool to assess the performance of lithographic processing
conditions.
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