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ABSTRACT. Object detection models are at the core of various computer vision tasks and have
shown excellent performance on public datasets, but they also inherit the disadvant-
age of neural networks that they are vulnerable to adversarial example attacks.
Adversarial patches are specific forms of adversarial examples that, as shown in
previous studies, can only make specific objects (such as pedestrians and traffic
signs), but not all objects, disappear. In addition, a patch must be placed on every
object to deceive the detector. To solve the above problems, we propose a location-
independent adversarial patch generation method that can attack objects in the
range to be detected with a single patch. By attacking the confidence loss of the
object detector, we creatively assign a greater weight to the foreground region,
which makes its confidence decrease faster and effectively guides the convergence
direction of the adversarial patch in the training process. Furthermore, we glue
the patches randomly on the images to make them less sensitive to location during
patch training. Experimental results indicate that the patches generated using our
proposed method are not restricted to specific areas of the image and provide a
minimum recall of 29.5%.
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1 Introduction
In recent years, deep neural networks have achieved excellent performance on a wide range of
computer vision tasks, and in some cases, even surpassing human performance.1 Attributed to the
powerful feature extraction capability of deep neural networks, computer vision techniques, such as
image classification,2 object detection,3 and face recognition,4 have advanced rapidly. Emerging
technologies, such as autonomous driving5 and robot control,6 are increasingly becoming mature.

However, this thriving landscape is overshadowed by the emergence of adversarial exam-
ples. The existence of adversarial examples was first identified by Szegedy et al.7 when they
attached some specially designed and imperceptible slight perturbations to test images and input
them into a DNN-based image classification system, which yielded incorrect outputs. As more
studies are conducted on adversarial examples, attack algorithms against other models or tasks
have subsequently emerged, such as attacks on video security systems through identity forgery,
malicious control attacks on speech, and text detection systems, and even more high-risk attacks
on autonomous driving systems. Adversarial attacks on object detection models can have sig-
nificant consequences. For instance, successful attacks can lead to the misclassification of objects
or the detection of non-existent objects. In some cases, such consequences could result in serious
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security risks, such as autonomous vehicles misidentifying objects on the road or facial recog-
nition software incorrectly identifying individuals. On May 7, 2016, a Tesla Model S was driving
in autopilot mode on a Florida highway in the United States when it failed to slow down and
crashed into a white tractor-trailer truck in front of it, resulting in a fatal crash, marking the first
fatal case of a self-driving car to come to light in the world. It is widely believed that at the time of
the accident, the Tesla confused the white truck body that was hit with the sky due to its strong
reflection, thus not detecting the presence of the obstacle. Consequently, the vulnerability of
models has become a key concern in AI security.8

Object detection is much more complicated than the classification task because it needs to
draw bounding boxes with an appropriate size to locate the targets in addition to classifying them.
In this paper, a method is proposed to perform to adversarial patch attacks against object detec-
tion models. As a special form of the adversarial example,9 an adversarial patch is a sticker-like
pattern occupying a small portion of the image, and the attack is no longer limited to imper-
ceptible variations. The patch can be placed on the tested image and successfully trick the detec-
tor from recognizing the object properly. The paper mainly aims to generate an adversarial patch
with a strong attack capability.

Thys et al.10 from KU Leuven, Belgium, have found that pedestrian detection systems could
be completely deceived with a simple print. These researchers aimed to decrease the object score
and class score at the output of the detector, and they were successful in attacking the pedestrian
detector based on the YOLO-V2 model11 by back-propagation training to generate an adversarial
patch. However, the researchers still followed the most common way of suppressing detection
scores in their approach to adversarial patch generation. Their experimental results, even showing
significant attack capabilities, can be further improved. This paper addresses some of the
limitations of the Thys team’s work, like its single attack category and inability to attack other
targets in the image.10 In addition, their patch needs to be placed on the tested object to attack,
and the attack capability is greatly reduced for objects without adhesive patches, which are more
sensitive to locations.

Moreover, with the growing use of object detection models in various applications, the
impact of adversarial attacks becomes more significant. In summary, the study of adversarial
attacks can explore the vulnerability of object detectors and reveal the susceptibility of deep
learning models. This, in turn, can help to identify the root cause of system confusion, misjudg-
ment, and omission of the attacked models, and investigate how to improve the robustness of
deep neural networks by studying their attack principles and details.

This paper proposes a position-independent adversarial patch generation method to deceive
object detectors based on the YOLO-V2 pretrained model on the COCO dataset. Unlike existing
methods, this method allows the patch to be placed anywhere in the image, making it more
versatile in attacking the model.

The main contributions of this paper are summarized as follows.

1. This paper proposes a method of adversarial patch attacks that does not require attaching
patches to each target but rather uses a single patch to make multiple types of objects in
the image disappear from the object detector. This approach contrasts with the work of
Thys et al., which only demonstrated efficacy against pedestrians.10

2. The design of the adversarial patch in the training process ensures robustness to location by
adopting a random position generation. The generated patch is not restricted to a specific
location, thereby avoiding interference from patch location. This approach allows the
patch to be placed in any part of the image to be attacked without necessarily overlapping
the object.

3. To blind the object detector, this method uses the object confidence score of the output.
The loss function for optimization has different focuses to balance the contribution of the
foreground and background. For obj-confidence >0.5, the foreground region is given a
greater weight to make its confidence drop faster, whereas a smaller weight is given to the
background region with obj-confidence <0.5 to optimize the gradient update direction.

2 Related Work
The work related to object detection and adversarial example is mainly reviewed.
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2.1 Object Detection Models
Object detection based on deep learning is a fundamental research topic in computer vision and
serves as a basis for advanced tasks, such as instance segmentation, object tracking, and image
description.12 Depending on whether the candidate regions are generated first, the current main-
stream detectors are mainly divided into two categories: two-stage detectors, such as Mask
R-CNN13 and Faster R-CNN,14 and one-stage detectors, such as SSD15 and YOLO.16 The two-
stage detector requires the CNN neural network to extract image features and generate candidate
regions that may contain objects. Then it further adjusts the position coordinates and classifications
of objects in the candidate regions to achieve higher accuracy. However, it operates at a lower
speed. The one-stage detector, on the other hand, runs faster as it skips the candidate region
generation step and uses only an end-to-end network to predict the class and location of objects.

Numerous object detection models have been developed to address various problems, but
they have presented a plethora of challenges. While the current models’ performance has been
continuously improving, their rising complexity and increased number of parameters have made
them unsuitable for industrial applications. To mitigate this issue, the knowledge distillation
(KD) technique was introduced in 2015 and has been widely adopted in computer vision,
particularly in image classification tasks. Over time, the application of KD has been extended to
other vision tasks, including target detection. KD leverages complex teacher models to transfer
knowledge learned from large-scale or multimodal data to lightweight student models, resulting
in improved model compression and performance.17 Additionally, the traditional detection per-
formance of these methods relies solely on the discriminative capabilities of region features,
which often depend on sufficient training data. Even with well-annotated data, we still face the
issue of data scarcity as novel categories (e.g., rare animals) continuously emerge in practical
scenarios. These aforementioned challenges have led us to investigate the detection task with
an additional source of complexity, zero-shot object detection (ZSD). Yan et al.18 developed
a semantics-guided contrastive network specifically designed for ZSD. To the best of our knowl-
edge, this is the first work that applies a contrastive learning mechanism for ZSD.

This paper aims to attack the widely used YOLO object detection models, which is highly
preferred in high real-time and complex scenarios.

2.2 Adversarial Example for Image Classification
In the field of image classification, Szegedy et al.7 were the first to discover that by making slight
perturbations to interfere with the input samples, a deep neural network-based image recognition
system can be deceived to output arbitrarily wrong results desired by the attacker, and the
samples in this case, are called adversarial examples. Goodfellow et al.19 proposed an algorithm
called the fast gradient sign method to generate adversarial examples. This has become one of the
most fundamental white-box methods for generating adversarial example for various task-
oriented attack problems. Other classical attack methods in the field of image classification
include PGD,20 DeepFool,21 universal adversarial perturbation,22 and Carlini and Wagner
attacks.23

2.3 Adversarial Example for Object Detection
Classical methods for object detection adversarial example generation typically iteratively
optimize the loss function. The adversarial examples are continuously adjusted and updated in
the gradient backpropagation process until the maximum number of iterations is satisfied or the
model prediction reaches the expected value. Lu et al.24 took the Faster-RCNN detector as an
attack model to deceive the detector by minimizing the average prediction score of the “stop” flag
and adding perturbations to the “stop” flag. This work is the first paper to propose adversarial
example generation in the field of object detection. Xie et al.25 proposed the Dense Adversary
Generation (DAG) attack method for the object detection model and the semantic segmentation
model. The method sets a non-correct label for the target and then iteratively moves toward the
direction with low-class confidence, eventually making the detector misclassify all regions of
interest (ROIs) of the input image. Additionally, Li et al.26 proposed the Robust Adversarial
Perturbation attack algorithm, which combines classification and regression tasks to design new
loss functions that focus on destroying the region-proposal network specific to the two-stage
model to attack the detector. Wei et al.27 addressed the issues of weak transferability and high
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time consumption of attack methods using a generative adversarial network (GAN) approach to
learn adversarial examples for image and video object detection. This method is called Unified
and Efficient Adversary, but it is more difficult to train, and its white-box attack is not improved
compared to DAG.

2.4 Adversarial Patch for Object Detection
Different from the adversarial example, the adversarial patch is a local perturbation that is not
limited by the perturbation paradigm and no longer aims for invisibility. So far, outstanding
results have been achieved in research adversarial patches. For example, Google’s Brown team
first designed a universal and robust adversarial patch in the field of image classification, which
can make the classifier output any target class after the patch is applied to the image. Later,
the work on adversarial patching was further extended to the field of object detection, and the
Ekyholt research team28 made a series of improvements to the robust physical perturbatiaon
algorithm29 for classifiers by introducing the disappearance attack loss algorithm. They trained
the algorithm to generate small, inconspicuous stickers and applied them to traffic signs, causing
the object detection system to fail to recognize the stop traffic sign. Chen et al.30 proposed the
ShapeShifter method for Faster R-CNN, which uses EOT transform to generate adversarial per-
turbations and adds the perturbations to other regions on the traffic signs other than text, resulting
the same attack results. Thys et al. generated adversarial patches by reducing the values of object
confidence and class probability in the pedestrian detection box, and iteratively optimized the
objective function with a backpropagation algorithm.10 The objective function also includes a
non-printability score, which ensures that the colors used in the image can be represented by the
printer. If a person wears the adversarial patch, they can disappear from the detector. Lee et al.31

generated a special adversarial patch by improving the work of DPatch.32 The loss function of the
model output was directly maximized as the optimization target. And the patch pixel values were
cropped to allow printing, so that the object detector can be successfully deceived in the real
physical world. The Adversarial T-shirt stealth t-shirt researched by the MIT-IBM Watson
AI research institute33 can be attached to a person to achieve the invisibility of the person to
the object detection model. The above-mentioned methods’ core idea is to reduce loss function
score of clean samples as the optimization objective, train the patches through backpropagation,
and add the generated patches to the target to deceive the detector.

3 Methodology

3.1 Overall Structure
The paper aims to create a position-independent, universal adversarial patch that can deceive the
object detector when placed anywhere in the image. As mentioned previously, Ekyholt et al. and
Chen et al. showed that it is possible to perform an adversarial patch attack on the object detector.
However, these previous works targeted single types of objects, such as stop signs and pedes-
trians. In contrast, the approach presented in this paper focuses on all targets in the image and
aims to create more challenging adversarial patches. In this paper, patches are trained using the
Inria dataset, which is dominated by pedestrians and transportation. Moreover, the patch is no
longer limited to covering the patch only on the target to be detected. Instead, the patch can be
placed in a random position in the image, causing the target to disappear from the detector.

This section explains how to address these challenges. In this paper, an iterative update is
performed at the pixel level to train a patch that can effectively reduce the recall of the object
detector, and the overall framework of the algorithm is shown in Fig. 1. At any position in the
image, the algorithm places the current version of the patch on the image after applying different
transformations. The resulting image is then fed to the detector, and the algorithm extracts the
presence confidence scores of the targets that are still detected. There scores are used to compute
the loss function, and the objective function continuously optimized through backpropagation
over the entire network to obtain the final generated patch.

Next, this paper explains more in detail the process of generating these adversarial patches.
Brown et al. of Google26 generated patches by maximizing the loss of the CNN classifier when
applying the patches to the input image. To make the patches effective under all inputs and poten-
tial transformations, the patches are transformed randomly before the inputs. Inspired by the
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above work, this paper first overlays the patch on the original image and then calculates the object
score loss of the object detector on the image. For all the objects involved in the training, the
lower the value of the existence object score is, the better the optimization process is. When the
object confidence falls below the threshold, the detector will identify the target as background,
and at this time the object will disappear from the detector. This can be expressed as

EQ-TARGET;temp:intralink-;e001;117;421arg min
δ

Eðx;yÞ∼D;t∼TðJðhθðAðδ; x; tÞÞ; yÞÞ; (1)

where D represents the distribution over the samples in the dataset, T denotes the patch-trans-
formed distribution. The label value y is also included in this equation. Additionally, A is the
patch application function, which indicates that the transformation t is applied to the patch before
it is added to the original image x. That is, a random rotation and random position determination
are performed on the patch, and then the patch is added to the image. This approach differs from
the Thys team’s method, which only targeted the “person” category in the image.10 Instead, this
function Jð·Þ seeks to extract the object confidence score of all items in the image, with the aim of
causing all detectable objects to disappear from the detector.

3.2 Objective Function
Specifically, the optimization of the objective function in this paper consists of three parts.

3.2.1 Print loss

To accommodate adversarial attacks in the physical world, Thys’ team introduced non-printable
loss and smoothing loss.10 However, print loss and smoothing loss were primarily designed to
enhance the visual fitness of the adversarial patch and are not directly linked to its attack capability.

Since the color gamut of the printer is limited, some colors of the digital display may not be
printed, and in this case, so the printer fails to reproduce the colors of the digital display exactly,
with the loss shown in the following equation:

EQ-TARGET;temp:intralink-;e002;117;150LNPS ¼
X

ppatch∈p
min
cprint∈c

kppatch − cprintk1; (2)

where ppatch represents a pixel in a patch, and cprint is one of a set of printable colors. The print
loss enables adversarial patches to be printed out with minimal color distortion by printers with
limited color range.

Fig. 1 Overall architecture of the patch generation method.
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3.2.2 Smoothing loss

The smoothing loss is to make the color of the patch smoother during optimization as well as to
prevent noisy images, as shown in the following equation:

EQ-TARGET;temp:intralink-;e003;114;693Ltv ¼
X
i;j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpi;j − piþ1;jÞ2 þ ðpi;j − pi;jþ1Þ2

q
: (3)

The function of the smoothing loss is to make the color of the patch smoother, with the goal
of making the neighboring pixels have similar colors. Specifically, the loss score is lower if the
neighboring pixels are similar and higher if they are different, thereby minimizing the color
difference between neighboring pixels to produce a smoother patch.

3.2.3 Object confidence loss

YOLO produces three outputs when an object is detected: the location of the bounding box, the
confidence of presence, and the category probability. When the object confidence score is smaller
than a threshold of 0.5, it is identified by the detector as a background region. The algorithm
proposed in this paper aims to make all objects in the image disappear from the detector. To
achieve this, the algorithm is trained to minimize the object confidence score of the detector
output. Since the algorithm proposed in this paper restricts its attack to the presence confidence
score of objects only, the whole training process become highly focused, and all the information
on the adversarial patch is concentrated on attacking the presence confidence of objects. If the
algorithm also attacked the category loss or location loss, it would have to attempt to find a
feature domain that deviates from its original category or location during training process.
However, in a high-dimensional, complex feature space, the feature vectors are allowed to deviate
in any direction. Since there are many objects and different backgrounds in the dataset, these
complex factors cause the feature vectors to fail to generate a uniform pointing and affect the
convergence of the patch. Therefore, this paper chooses the confidence score of the object as the
loss of the objective function, as shown in the following equation:

EQ-TARGET;temp:intralink-;e004;114;388Lobj ¼
1

m
JðfðxiÞÞ; (4)

where xi represents the first image of the current batch, andm images will be selected for training
in each batch. fðxiÞ represents the output of the sample after inputting it to the detector f, includ-
ing the bounding box location, presence confidence, and classification probability. The function
Jð·Þ is used to extract the confidence of object presence, and JðfðxiÞÞ represents the object con-
fidence score of all detected objects extracted in the output:

EQ-TARGET;temp:intralink-;e005;114;295JðfðxiÞÞþ ¼

8><
>:

−0.5 × conf; if 0.2 ≤ conf < 0.3;
−1 × conf; if 0.3 ≤ conf < 0.5;
−2 × conf; if 0.5 ≤ conf < 0.7;
−4 × conf; if conf ≥ 0.7:

(5)

The loss function for object detection is commonly comprised of three parts: classification,
regression, and confidence losses. The classification loss measures the accuracy of the detected
target’s class while the bounding box position loss assesses the degree of difference between the
predicted and real object box. The confidence loss indicates whether the predicted box contains
the target, with higher confidence values suggesting that the bounding box is more likely to
contain the target. Consequently, fixed threshold values (typically set to 0.5) are often used to
identify foreground and background samples based on prediction box confidence. In IoU-based
object detection frameworks, prediction boxes with obj-confidence values greater than the
threshold are classified as foreground, while those below the threshold are considered back-
ground. During training, it is necessary to minimize multiple loss functions concurrently with
the ultimate objective of obtaining the best detection outcome. In the context of an adversarial
attack, the model is unable to predict the bounding box, which requires that all obj-confidence
scores be <0.5. Consequently, our loss optimization becomes different, and the update direction
for the loss becomes more biased toward the foreground class than the background class.

Ding et al.: Location-independent adversarial patch generation for object detection

Journal of Electronic Imaging 043035-6 Jul∕Aug 2023 • Vol. 32(4)



For obj-confidence scores >0.5, it is necessary to assign higher weights to reduce the confidence
level faster, while obj-confidence scores below 0.5 require lower weights.

This paper exhibits creativity by assigning different weights for different confidence scores
to optimize the direction of the gradient update, balance the contribution of the foreground and
background to the loss function, and improve the efficiency of the attack. The weight assignment
is shown in Eq. (5).

Thus the overall optimization objective can be expressed as

EQ-TARGET;temp:intralink-;e006;117;652Ltotal ¼ αLobj þ βLnps þ γLTV: (6)

The overall objective of the algorithm presented in this paper is to minimize the total loss.
During the optimization process, the algorithm freezes all weights in the network and updates
only the pixel values in the patches.

3.3 Training
Initially, the patch is a noisy pattern. To enhance the robustness of the patch during the
optimization process, this paper adopts the expectation of transformation strategy by performing
a set of transformations on the patch before applying it to the image. These transformations
include random rotation, angle deflection, noise addition, brightness, contrast adjustment, and
other operations.

In particular, to reduce the sensitivity of patches to position, the patches are positioned at
random locations in the image during each iteration, and object confidence score is extracted
from the output to construct the loss function. The process of training adversarial patches, in
which the location of the patch is randomized rather than fixed in a certain region, is intended
to enhance its ability to generalize across different scenarios and locations. If the patch is fixed to
a certain location, it would only be effective in attacking targets in that specific location and
would be incapable of effectively attacking in other regions. By randomizing the location of
the patch during training, the patch is exposed to different locations and scenarios, which better
prepares it to adapt to attacks from different directions and locations. This randomization also

Algorithm 1 IndependentPatchGen.

Input: A clean picture x , object detection model to be attacked f , decay factor: β1; β2

The maximum number of iterations: T ¼ 5000

Confidence extraction function

Output: Adversarial patch δ

1 While t < T :

1 1 xattack ¼ x þ transformðδÞ Transform the patch and randomly place it in the image

2 2 Lobj ¼ 1
m

Pm
i¼1 Jobjðf ðxattackÞÞ Extract obj loss after the patch input detector

3 3 LNPS , LTV Calculate the non-printable loss and smooth loss

4 4 Ltotal ¼ αLobj þ βLnps þ γLTV Calculate the total loss

5 5 gt ¼ ∂Ltotal
∂δ Calculate the gradient of the total loss

6 6 mt ¼ β1mt−1 þ ð1 − β1Þgt Calculate the first-order moment of the gradient

7 7 v t ¼ β2v t−1 þ ð1 − β2Þg2
t Calculate the second-order moment of the gradient

8 8 m̂t ¼ mt
1−βt1

v̂ t ¼ vt
1−βt2

Perform bias correction

9 9 δtþ1 ¼ cl ipð0;1Þ
n
δt þ ηffiffiffiffi

v̂ t

p
þε

m̂t

o
update the patch using Adam

10 10 t ¼ t þ 1

11 end while

Return δ
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reduces its sensitivity to specific regions, making it more versatile and flexible for use in a variety
of situations. In summary, randomizing patch locations during the training process enhances its
versatility in different environments, making it more effective and adaptable for use in various
scenarios.

To update the pixel values of the patch pattern, we utilize Adam’s algorithm for backpro-
pagation. This algorithm applies independent adaptive learning rates to different parameters,
making it efficient in multi-dimensional optimization problems with smaller gradients, where
it can speed up the descent of the loss function, jump out of local minimum values, and promote
better convergence.

4 Analysis of Data and Experimental Results

4.1 Dataset and Experiment Details
The CPU of this experimental environment is a 4× 10-core Intel® Xeon® E5-2650 processor.
The GPU is Nvidia RTX 3080Ti graphics card with 11 GB of video memory, the GPU driver
environment is CUDA10.0, the development language is based on Python3.6. Moreover, this
paper utilizes Pytorch as the primary deep learning framework and supplement it with Numpy,
Opencv, and other necessary third-party libraries.

The experiments in this paper are based on the YOLO-V2 model trained from the PASCAL
COCO dataset. The patch training dataset is the Inria dataset, INRIA Person is a multi-environ-
ment pedestrian dataset, which is one of the most popular and most used static pedestrian
detection datasets at present, published by INRIA (the National Institute of Information and
Automation, France). Recall calculation is based on an IOU of 0.5. Other parameter settings
are shown in Table 1.

4.2 Evaluation Indicators

4.2.1 Recall

There are different evaluation criteria for measuring the performance of object detection in deep
learning. First, this paper introduces the concept of positive and negative cases in detection
results. To be specific, true positive (TP) refers to the number of samples that are originally
positive and the detection results are positive. False positive indicates the number of samples
that are originally negative and the detection results are positive. False negative (FN) indicates
the number of samples that are originally positive and the detection result is negative. True neg-
ative indicates the number of samples that are originally negative and the detection results are
negative. Recall is a performance metric that measures the percentage of all true targets detected
by our model, and the calculation formula is defined as follows:

EQ-TARGET;temp:intralink-;e007;114;292recall ¼ TP

TPþ FN
: (7)

4.3 Experimental Results
As mentioned earlier, the main goal of this paper is to train a patch for the Inria dataset that
deceives the detector. This paper achieves this by placing the patch on different images to create

Table 1 Hyperparameter settings for the algorithm.

Parameter Value

Maximum number of iterations T ¼ 5000

Objective function hyperparameters α ¼ 1, β ¼ 0.01, and γ ¼ 2.5

Adam decay rate β1 ¼ 0.9 and β2 ¼ 0.999

Batch size m ¼ 16

Initial learning rate η ¼ 0.001
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a generalized adversarial patch. Once the patch is attached to the input image, the detector does
not extract a valid ROI and misclassifies all targets as background regions due to the low con-
fidence score. This results in the disappearance of all targets from the detector.

4.3.1 Recall

In this paper, patches are trained with pretrained YOLO-V2, YOLO-V5, and YOLO-V6 models
in the COCO dataset and applied to the Inria test set to evaluate the patch attack effectiveness.
These models achieve a recall rate of ∼100% at an IOU threshold of 0.5, indicating that the
models can detect almost all targets. Since the recall rate is heavily affected by the threshold,
this paper also evaluates it at an IOU threshold of 0.5 during the validation period.

The main purpose of applying this patch is to decrease the recall of all categories in the
dataset to lower values, and the more the recall is reduced, the more successful the attack
becomes. As depicted in Table 2, our approach successfully deceives nearly all categories within
the Inria dataset after ∼1500 training iterations. The recall rate diminishes from 100% to 41.3%
on YOLO-V2, from 97.7% to 31.2% on YOLO-V5, and from 98.2% to 29.5% on YOLO-V6.
Moreover, the patch in our study can suppress the detection of all objects in the image, not just
pedestrians, as shown in Fig. 2, in comparison to the Thys team’s work.

4.3.2 Quantitative analysis

Analysis of the convergence time and complexity of the algorithm. The term
“epoch” refers to each instance where the algorithm uses all available samples. In the backpro-
pagation process, this paper utilized the Adam optimization algorithm, set the initial learning rate
to 0.001, specified the maximum number of iterations to 5000, and set the batch size to 16.

As illustrated in Fig. 3, the rate of loss decline is most notable at the beginning of the training
period (when training iterations are <500 epochs). As the patch receives more training, the effect
of its attack becomes less potent. Hence, we concluded that a saturation point exists for the train-
ing patches. Increasing the number of training iterations beyond this point will no longer improve
the attack’s effectiveness.

Table 2 Recall of adversarial patch attacks against different object detection models.

Model Clean (%) Recall (%)

YOLO-V2 trained PATCH 100 41.3

YOLO-V5 trained PATCH 97.7 31.2

YOLO-V6 trained PATCH 98.2 29.5

Fig. 2 Example of our patch on the Inria test set, which is not only effective for pedestrians but also
inhibits the detection of all objects in the image. (a) Original image and (b) attack.
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In addition, to analyze the convergence and complexity of the algorithm, this paper conducts
ablation experiments on object confidence score loss to verify the effect of adding and not adding
weighting on patch convergence. As shown in Fig. 3, the object confidence score decreases faster
when the foreground region is given more weight. In this paper, we obtained a training level of
5000 epochs for the baseline method with ∼1500 epochs of training, significantly reducing the
training time.

Randomness of patch location. The location-independent property of the patches
implies that the same patch can appear anywhere in the image. The primary purpose of this
approach is to assess the attack’s effectiveness at different positions where patches are placed.
If the attack efficiency does not vary for different positions, there is no need to design a specific
attack area. This means that the attacker can place patch in any region of the image. Figure 4
depicts the detector being attacked by a randomly located patch. The first row presents the detec-
tion results for a clean sample, and the second row illustrates the detection results after adding the
patch. Notably, the location of the patch does not impact the attack results. Therefore, detection
suppression can be achieved for objects in the image regardless of the patch’s location.

During the detection process, all identified objects are misclassified as background, regard-
less of the patch’s position. As a result, we can place the patch randomly in the image without
designing its specific location. This enhances the attack’s feasibility.

Comparison of the number of patches. To investigate the impact of patch quantity on
attack effectiveness, this paper compares the patches generated by Thys’ team with those in this
study. Figure 5(a) depicts the result when only one patch generated using the Thys team’s method

Fig. 3 Comparison of convergence times of the two methods: (a) the approach of Thys’ team and
(b) ours.

Fig. 4 Examples of our patch with random location: (a) original detection and (b) adversarial
attack.
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was stuck on the entire image, whereas Fig. 5(b) depicts the original method in which a patch was
applied to each target. Figure 5(c) shows the result when only one patch generated using the
approach taken in this paper was stuck on the entire image.

The method in this paper can suppress all the objects in the image, whereas the Thys team’s
method needs to apply patches to each target individually and has no attack capability for other
objects without sticky patches. Moreover, the recall was computed for the three patch-sticking
methods discussed above, as presented in Table 3. The results reveal that the Thys team approach
is more susceptible to the number of patches, leading to an increase in recall up to 60.5%.
In summary, the use of adversarial patches leads to varying degrees of error in the detector,
but the method presented in this paper can achieve stronger attacks using fewer patches.

Fig. 5 Examples of (a) one patch attack, (b) the original patch attack of the Thys team’s
approaches, and (c) our patch attack.

Table 3 Comparison of one patch, the original patch of the Thys
team’s approaches, and our patch in terms of recall.

Approach Recall (%)

CLEAN 100

OBJ with one patch 60.5

OBJ 48.6

Ours 41.3
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4.3.3 Comparison experiments

In this section, we conduct an experimental evaluation of our proposed method along with other
approaches, such as random noise and the Thys team’s methods. These comparative experiments
are intended to assess the performance, effectiveness, and practicality of our proposed method
across various models. By conducting these comparison experiments, we observe that our
method described in this paper attains the highest attack success rate on several models.

As seen in Tables 4–6, the impact of the random noise approach on recall is minimal, making
it ineffective in terms of attack capability. However, when considering the YOLO-V2 and
YOLO-V5 models, our proposed method outperforms the other two baseline methods signifi-
cantly, resulting in a minimum recall rate of *%. Furthermore, we conducted comparative experi-
ments on the two-stage model, Faster-RCNN, using our proposed method described in this paper.
The results demonstrate that our method achieves the highest attack success rate. These findings
indicate that our method holds greater potential for launching attacks on different models.

In conclusion, this section presents an evaluation through comparative experiments with
other methods. The results demonstrate that the method proposed in this paper achieves a high
success rate on several models, thereby establishing the superiority and feasibility of our
approach. Consequently, it offers enhanced capabilities for addressing various attack scenarios.

4.3.4 Ablation experiments

In this paper, the ablation experiments are conducted to examine the influence of various loss
functions on the patch attack capability and assess their respective attack success rates.
Specifically, we employ different loss function terms on the YOLO-V5 model to establish strat-
egies that effectively evaluate each term’s impact. Three strategies are selected for comparison,
with recall serving as the evaluation metric. The experimental results are shown in Table 7.

Table 4 Recall (%) of adversarial patch attacks against YOLO-V2.

YOLO-V2 Clean (%) Recall (%)

Random noise 100 91.8

Thys’ method 100 48.6

Ours 100 41.3

Table 5 Recall (%) of adversarial patch attacks against YOLO-V5.

YOLO-V5 Clean (%) Recall (%)

Random noise 97.7 96.7

Thys’ method 97.7 42.5

Ours 97.7 31.2

Table 6 Recall (%) of adversarial patch attacks against YOLO-V6.

YOLO-V6 Clean (%) Recall (%)

Random noise 98.2 96.3

Thys’ method 98.2 38.4

Ours 98.2 29.5

Ding et al.: Location-independent adversarial patch generation for object detection

Journal of Electronic Imaging 043035-12 Jul∕Aug 2023 • Vol. 32(4)



The experimental results demonstrate that different loss functions significantly affect the
efficacy of patch attacks. Among them, the print loss and smoothing loss methods exhibit min-
imal impact on the attack success rate. As observed in Table 8, employing only print loss and
smoothing loss hardly influences the recall rate, indicating a lack of attack capability. Conversely,
utilizing object confidence loss yields a more pronounced attack capability, resulting in a greater
decrease in the recall rate. Thus it can be concluded that print loss and smoothing loss primarily
contribute to enhancing the visual appearance of the adversarial patch and do not directly in-
fluence its attack capability.

Furthermore, object detection can be regarded as a unified framework for both regression
tasks (bounding box location) and classification tasks (target category), as it requires precise
target localization and accurate target classification. Consequently, multiple loss functions are
necessary for effective training. For our patch-based training approach, we employed a different
combination of position loss, confidence loss, and category loss functions in the YOLO-V5 out-
put. The results presented in Table 8 demonstrate the varying performance of these loss functions
in the attack task. Our method incorporates a weighted confidence loss, assigning greater weight
to the foreground region, resulting in improved attack outcomes.

To summarize, our ablation experimental results demonstrate the significant influence of
various loss function choices on the effectiveness of adversarial patch. These findings serve
as a reference and guide for future enhancements in object detection adversarial patch generation
methods. Furthermore, they contribute to a better understanding of the impact that different loss
functions have on the adversarial patch attack task.

5 Conclusions
In this paper, we demonstrate the attack capability of the method on the pedestrian detection
dataset by minimizing the confidence score of the detector output to generate patches.
Compared to previous work, the patch in this paper is more robust and general because: (1) the
method proposed in this paper only requires attaching a patch to the entire image to perform
an effective attack on the detector. Furthermore, it does not attack a single type of target but
rather suppresses the detection of all objects in the image. (2) The attack of the method success-
fully suppresses the detection without the need to overlap the patch with the target object.
Additionally, it is less sensitive to the patch’s location. The successful implementation of the
work in this paper also highlights the inherent vulnerability of deep learning-based detectors
to patch-based adversarial attacks. This finding is of great significance when studying the robust-
ness of deep neural networks and adversarial defense.

Table 7 Trade-off experiments of different loss functions on YOLO-V5.

Print loss Smoothing loss Obj loss Recall (%)

✓ ✗ ✗ 97.5

✗ ✓ ✗ 96.3

✗ ✗ ✓ 30.7

✓ ✓ ✓ 31.2

Table 8 Trade-off experiments of different loss functions on YOLO-V2.

Approach Recall (%)

CLEAN 100

OBJ-CLS 59.5

OBJ 48.6

Ours 41.3
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