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Abstract. An image denoising method is proposed for ultrasonic logging images with severe
noise. The proposed method works on a variational Bayesian framework using block sparse
prior. First, the sparse coefficients are simulated by a more appropriate distribution—Laplacian
distribution. Then the variational Bayesian denoising model in which Laplacian distribution is
used as a prior term of sparse coefficients is proposed. Finally, semiquadratic regularization is
used to solve the model with a simplified process. Moreover, during the denoising process, a
relaxation factor is introduced to improve the accuracy. In the vast majority of cases, the pro-
posed method obtained better results in both the visual quality and the objective evaluation. It
achieves better denoising performance than the existing denoising methods when the edge
details of the images are contaminated by noise, especially severe noise. The experimental results
show that the proposed method is practical in ultrasonic logging images.© The Authors. Published
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1 Introduction

With the increasing demand for oil and gas in the 21st century, ultrasonic logging imaging will
be more and more widely used due to its intuitive feature. During the logging, a motor drives the
transducer and magnetometer to rotate around the axis of the instrument at a fixed rate to scan the
entire borehole wall. In contrast, the ultrasonic logging image is inevitably contaminated by
noise. It is necessary to remove noise and improve the image quality, which will guarantee sub-
sequent image processing performance, such as for fracture segmentation, hole recognition, and
reservoir interpretation. The purpose of denoising is to preserve image details while removing
noise. In the past decades, scholars have proposed a variety of denoising methods, including
average filter, total variation, sparse coding, and deep learning.1–4

The average filter is an effective method for removing noise, but the edges become blurry
after denoising. Garnett et al.5 presented a new trilateral filter based on the bilateral filter to
remove noise. Aweighting cost function was designed to calculate the weights of neighbor pixels
and operate the filter. It effectively removed noise while preserving the image edges when the
noise intensity was small. However, the denoised results became very poor, and the noise inten-
sity was severe. Li and Suen6 proposed a new nonlocal means method based on gray theory. The
experiments showed that their method has a superior denoising ability. The method accurately
discriminated between the information and noise while effectively reducing the pseudo-Gibbs
artifacts. Unfortunately, although the noise was severe, some pseudo-Gibbs artifacts were still
visible after denoising. Then, Li and Wang7 presented an improved wavelet threshold denoising
method combining non-local mean filtering. However, it had difficulty extracting the redundancy
of visual images, especially for the images with severe noise. Recently, to solve the problem that

*Address all correspondence to Luoyu Zhou, luoyuzh@yangtzeu.edu.cn

Journal of Electronic Imaging 013004-1 Jan∕Feb 2023 • Vol. 32(1)

https://orcid.org/0000-0003-4417-1250
https://doi.org/10.1117/1.JEI.32.1.013004
https://doi.org/10.1117/1.JEI.32.1.013004
https://doi.org/10.1117/1.JEI.32.1.013004
https://doi.org/10.1117/1.JEI.32.1.013004
https://doi.org/10.1117/1.JEI.32.1.013004
https://doi.org/10.1117/1.JEI.32.1.013004
mailto:luoyuzh@yangtzeu.edu.cn
mailto:luoyuzh@yangtzeu.edu.cn
mailto:luoyuzh@yangtzeu.edu.cn


the early lesions of COVID-19 are not obvious and the generated images are easily contaminated
with noise, Guo et al.8 proposed an adaptive two-stage filtering method for COVID-19 CT
images. The results demonstrated that their method achieved satisfactory denoising performance
when the images were contaminated with impulse noise. However, its denoising performance of
Gaussian noise still needs to be improved.

In the last decade, total variation has been one of the popular methods in image denoising.
The total variation method, was first proposed by Rudin et al.;9 it achieved a trade-off between
noise removal and edge preservation. However, the method easily generated block effects. A
number of methods based on total variation have been proposed to suppress the block effects.
You and Kaveh10 proposed a fourth-order partial differential equation for noise removal. In their
method, a cost function was proposed based on the image intensity function. Then the mini-
mization of the cost function was solved by the time evolution of the partial differential equation.
Chan et al.11 proposed an improved model by adding a nonlinear fourth order diffusive term to
the Euler-Lagrange equations of the total variation model, and then Shahdoosti et al.12 proposed
a new hybrid denoising scheme using total variation and ripplet transform. The visual quality
demonstrated that their schemes provided sharper edges. Recently, Wang et al.13 proposed a
vector total fractional-order variation for image denoising. Furthermore, they introduced a regu-
larization term for describing texture space to improve the denoising performance. Guo and
Chen found that the main shortage of the traditional total variation was that it cannot reflect
the local feature owing to the same weight of different orientation of total variation.
Therefore, they proposed a nonconvex anisotropic total variation for image denoising.14 The
results showed that it was very effective for suppressing staircase effects. Overall, the total varia-
tion method can achieve good performance, but it has difficulty minimizing the cost
function because of the nondifferentiability of the model.

Sparse coding is a newly built image representation method in signal processing.15,16 It shows
that the signals can be exactly reconstructed by fewer coefficients than the traditional methods. In
recent years, sparse coding has been studied quite extensively for image denoising. The existing
image denoising methods based on sparse coding include two steps. First, image blocks are
expressed by a linear combination of a few coefficients taken from the basis functions.
Second, the noise is removed from the image because the noise distribution does not meet the
sparse assumption in general. Recently, Dong et al.17 proposed a nonlocally centralized sparse
representation denoising method combining nonlocal self-similarity and sparse representation of
images. It has a very powerful denoising performance. However, solving K-means and principal
component analysis (PCA) used with this method is difficult. Inspired by Dong’s method, Nejati
et al.18 proposed a denoising method based on sparsity and low-rank representation that also took
advantage of nonlocal self-similarity and image sparsity. Liu et al.19 proposed a correlation adap-
tive sparse model for image denoising. Their proposed model adaptively selected different image
data using local and nonlocal correlation. In contrast, Zhang and Li20 presented an image denois-
ing and repair model based on compressed sensing theory, and the results demonstrated that their
model effectively removed noise.

Deep learning was first used for image denoising in 2015.21 It does not need the parameters to
be manually set in the denoising process. Then, Mao et al.22 introduced multiple convolutions to
remove noise and obtain the high-resolution image and Zhang et al.23 proposed a flexible neural
network for denoising by introducing different noise levels and the image patch as the input.
Scetbon et al.24 presented an end-to-end deep architecture with the exact K-singular value
decomposition (K-SVD) computational path and trained it for optimizing the denoising perfor-
mance. The deep learning methods can improve denoising results; however, they have high
requirements of the hardware for training deep networks.

Although various image denoising methods have been applied to numerous fields, few meth-
ods have been proposed for ultrasonic logging images. Motivated by the research, we propose a
novel variational Bayesian inference framework for ultrasonic logging image denoising using a
sparsity prior term. This prior assumes that the outputs of local sparse coefficients of the ultra-
sonic logging image obey a Laplacian distribution, which is demonstrated by many simulations
and tests. The main contributions of this work rely in three aspects. First, we use the Laplacian
distribution to simulate the sparse coefficients of ultrasonic logging images. Second, we intro-
duce the sparse prior term into the variational Bayesian model to improve the denoising
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performance. Finally, semiquadratic regularization is used to solve the model. Moreover, during
the denoising process, a relaxation factor is introduced to further improve the accuracy. The
experiments demonstrate that our proposed algorithm can obtain a competitive performance
compared with existing denoising algorithms, especially for ultrasonic logging images with
severe noise.

This paper is organized as follows. Section 2 shows the image model and sparse coefficients
of the ultrasonic logging images. The variational Bayesian denoising model is detailed in Sec. 3.
Experimental results are shown in Sec. 4, and finally conclusions and future research directions
are presented in Sec. 5.

2 Image Denoising Model and Sparse Coefficients of Image

2.1 Image Denoising Model

For convenience but without loss of generality, we use 1D notation to represent the imaging
model, as shown in the following equation:

EQ-TARGET;temp:intralink-;e001;116;537g ¼ f þ n; (1)

where g denotes the observed image, f denotes the original image, and n denotes the
additive noise.

To utilize the image sparsity, we define K filters Dk [assumed to be an orthonormal basis,
e.g., discrete cosine transform (DCT) and wavelet], and the outputs of these filters are shown as

EQ-TARGET;temp:intralink-;e002;116;458εk ¼ Dkf k ¼ 1; · · · ; K; (2)

where εk satisfies the sparsity constraint and ε ¼ ½ε1; · · · ; εK�. Now we determine the appropriate
statistical model to simulate the distribution of εk.

2.2 Statistical Model of Sparse Coefficients

Historically, sparse coding can be traced back to the proposition of wavelet transform25 and
multiresolution analysis.26 Further, sparse coding can be successfully employed in image
processing. To date, studies on sparsity can be divided primarily into two kinds: basis function
and sparse coefficients. For basis functions, the main aim is to represent the sparse vector under a
certain basis function. For sparse coefficients, the aim is to find an appropriate statistical model
to express sparse coefficients.

We assume that the distribution of sparse coefficients εk is independent and identically
distributed, with the parameters ⇀ θk ¼ ½θk1; θk2; · · · �. So the prior of εk is expressed as

EQ-TARGET;temp:intralink-;e003;116;270PðεÞ ¼
Y
k

PðεkÞ; PðεkÞ ¼
Z

∞

0

Pðεkj⇀ θkÞd⇀ θk: (3)

As for the ultrasonic logging images, the distribution of the sparse coefficients obeys a heavy-
tailed distribution, as shown in Fig. 1. First, the heavy-tailed distribution of the sparse coeffi-
cients results from the filter outputs of the image edge areas being usually small. Then the heavy-
tailed distribution can be regarded as a prior and used as a regularization term for the denoising
model. Second, unlike the visual images with heavy-tailed distributions of the sparse coefficients
that obey the Gaussian distribution, the sparse coefficients of ultrasonic logging images obey a
different distribution.

As a family of statistical models, Gaussian distribution, Laplacian distribution, and Student-t
distribution all obey a heavy-tailed distribution. To determine the appropriate statistical model to
simulate the distribution of sparse coefficients, we randomly choose 100 ultrasonic logging
images (the sample is shown in Fig. 2) and utilize the above three distributions to simulate their
spare coefficients. The simulated results are shown in Fig. 3.
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Fig. 2 (a)–(f) Samples of ultrasonic logging images.

Fig. 3 Simulation of sparse coefficients of the ultrasonic logging images in Fig. 2. (a) The sim-
ulation of Fig. 2(a), (b) the simulation of Fig. 2(b), (c) the simulation of Fig. 2(c), (d) the simulation of
Fig. 2(d), (e) the simulation of Fig. 2(e), and (f) the simulation of Fig. 2(f) (with the horizontal axis
representing the value of sparse coefficients and the vertical axis representing the probability den-
sity distribution).

Fig. 1 Heavy-tailed distribution of sparse coefficients of an ultrasonic logging image: (a) ultrasonic
logging image and (b) the distribution of sparse coefficients (with the horizontal axis representing
the value of sparse coefficients and the vertical axis representing the probability density
distribution).
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As seen from Fig. 3, three simulated results are different obviously. The Gaussian distribution
matches well with the center of the original data, and the Student-t distribution matches well with
the kurtosis of the original data. By contrast, the Laplacian distribution matches well with both
the center and the kurtosis of the original data. Moreover, we used the root mean square error
(RMSE) to quantitatively evaluate the simulated results. RMSE is defined as

EQ-TARGET;temp:intralink-;e004;116;460MSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Num

X
i

ðYsi − YoiÞ2
s

; (4)

where Ysi is the simulated values, Yoi is the original values, and Num is the length of Ysi.
As seen from Table 1, the results simulated by the Laplacian distribution are better than the
other two distributions. Therefore, we use the Laplacian distribution as a prior term of sparse
coefficients, expressed as

EQ-TARGET;temp:intralink-;e005;116;361Pðεkj⇀ θkÞ ¼
1

2θk1
exp

�
−
jεk − θk2j

θk1

�
: (5)

Existing models always assume the mean θk2 ¼ 0, which violates the actual results.
Therefore, in our model, the mean θk2 ≠ 0. However, solving this prior term is difficult because
its normalization constant cannot be found in closed form. One contribution of this paper is that a
constrained variational Bayesian model is derived for solving this problem. This algorithm is
described in detail next.

3 Variational Bayesian Model for Denoising

3.1 Hierarchical Bayesian Analysis

The model Eq. (1) is converted into the following form via Eq. (2):

EQ-TARGET;temp:intralink-;e006;116;176Dkg ¼ Dkf þ Dkn k ¼ 1;2; · · · ; K: (6)

So we use the commuting property and rewrite the model as

EQ-TARGET;temp:intralink-;e007;116;132wk ¼ εk þ nk k ¼ 1;2; · · · ; K; (7)

where wk ¼ Dkg denotes the filter outputs of the observed images and nk denotes the filter
outputs of the additive noise nk ∼ Nð0; σ2nÞ. As for the parameters of the Laplacian prior, two
parameters⇀ θ ¼ ½θ1; θ2� are estimated. To simplify the computation, we assume the parameters

Table 1 RMSE of the simulated results of all images. (The smallest RMSE is marked in bold.)

Images

RMSE∕10−3

Gaussian simulation Laplacian simulation Student-t simulation

Fig. 2(a) 6.572 1.329 9.943

Fig. 2(b) 2.336 2.189 11.832

Fig. 2(c) 9.908 3.830 9.419

Fig. 2(d) 2.536 0.929 9.925

Fig. 2(e) 4.093 1.090 10.070

Fig. 2(f) 12.371 3.052 4.135

The average of all images 5.125 2.319 8.532
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(θ1 ¼ θ; θ2 ¼ u) that are directly calculated by the sparse coefficients. Then the Laplacian prior
term is written in a simplified form as

EQ-TARGET;temp:intralink-;e008;116;711PðεkjθkÞ ¼
1

2θk
exp

�
−
jεk − ukj

θk

�
: (8)

The maximum a posteriori estimator is obtained as

EQ-TARGET;temp:intralink-;e009;116;654Pðg; ε; θÞ ¼ Pðgjε; θÞPðε; θÞ ¼ Pðgjε; θÞPðεjθÞPðθÞ: (9)

As for the parameters, Jeffrey’s prior has been proposed as an appropriate choice, that is

EQ-TARGET;temp:intralink-;e010;116;610PðθkÞ ¼
1

θk
: (10)

Therefore, Eq. (9) is translated into the new form using Eqs. (7), (8), and (10)

EQ-TARGET;temp:intralink-;e011;116;553

Jðε; θÞ ¼ arg max log½Pðgjε; θÞPðεjθÞPðθÞ�

¼ arg min
ε;θ

1

2σ2n
kDg − εk22 þ

X
k

logð2θkÞ þ
X
k

jεk − ukj
θk

þ
X
k

log θk; (11)

where J is a cost function. For Jeffrey’s prior, log θk → ∞ as θk → 0, which results in Eq. (11)
being unstable. So we have logðθk þ δÞ instead of logðθkÞ, where δ is a very small number for
improving the stability of Eq. (11). In this case, the model Eq. (11) is written in the following
form:

EQ-TARGET;temp:intralink-;e012;116;441Jðε; θÞ ¼ arg min
ε;θ

1

2σ2n
kDg − εk22 þ 2 logðθþ δÞ þ

X
k

jεk − ukj
θk

: (12)

For the Laplacian prior term, we have ε ¼ ρυ and u ¼ ρμ, where ρ ¼ diagðθkÞ is a diagonal
matrix for normalizing ε of the image block. Then the Bayesian model is converted into the joint
estimation of Jðυ; θÞ as

EQ-TARGET;temp:intralink-;e013;116;357Jðυ; θÞ ¼ arg min
υ;θ

1

2σ2n
kDg − ρυk22 þ 2 logðθþ δÞ þ kυ − μk1: (13)

Unlike Chantas et al.,27 who utilized the Student-t distribution as the prior term and solved the
variational Bayesian model by approximation of a lower bound on the logarithm of the marginal
likelihood, or Shanthi et al.,28 who utilized the Gaussian scale mixture distribution as the prior
term and converted their model into L2-norm, we explicitly utilize the general Laplacian
distribution as the prior term and convert the sparse model into L1-norm. In fact, compared
with L2-norm, L1-norm is more specifically suitable for image sparsity. Such a sparse model
is appealing and motivates us to further exploit the solution.

3.2 Solving the Variational Bayesian Model

For sparse coefficients, it is necessary to extract similar blocks from the observed image, with
sparse coefficients ε that should be simulated by the same prior. Thus, these similar blocks are
combined to extend Eq. (13) as

EQ-TARGET;temp:intralink-;e014;116;154JðY; θÞ ¼ arg min
Y;θ

1

2σ2n
kDG − ρYk22 þ 2 logðθþ δÞ þ kY −Mk1; (14)

where G ¼ ½g1; g2 · · · gn� is the collection of n similar blocks. Accordingly, Y ¼ ½υ1; υ2 · · · υn�
and M ¼ ½μ1; μ2 · · · μn� are the collection of υ and μ, respectively.
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For the model Eq. (14), there exists a very popular approach for minimizing J called
alternating minimization, that is, one starts with some initial guess, and then one successively
obtains the alternating sequence of conditional minimizers.

3.2.1 Optimization of θ

For the optimization of θ, it is simplified by fixing Y as shown in the following equation:

EQ-TARGET;temp:intralink-;e015;116;650θ ¼ arg min
θ

1

2σ2n
kDG − ρYk22 þ 2 logðθþ δÞ: (15)

Moreover, Eq. (15) is simplified as

EQ-TARGET;temp:intralink-;e016;116;593θ ¼ arg min
θ

1

2σ2n

����W −
XK
k¼1

υkθk

����
2

2

þ 2 logðθþ δÞ; (16)

where W ¼ DG. To seem more intuitive, the equation is written as

EQ-TARGET;temp:intralink-;e017;116;531θ ¼ arg min
θ

fðθÞ ¼ arg min
θ

X
k

akθ2k þ bkθk þ c logðθk þ δÞ: (17)

The optimization of θ is transformed into the minimization of quadratic function fðθÞ.
The function is further decomposed into a series of subproblems as

EQ-TARGET;temp:intralink-;e018;116;464θk ¼ arg min
θk

fðθkÞ ¼ arg min
θk

akθ2k þ bkθk þ c logðθk þ δÞ: (18)

Obviously, this is solved after taking the derivative of fðθkÞ to θk and equating it to zero,
followed as

EQ-TARGET;temp:intralink-;e019;116;399

dfðθkÞ
dθk

¼ 2akθk þ bk þ
c

θk þ δ
¼ 0: (19)

Then, when Δ ¼ b2k − 8akc ≥ 0, the solution of Eq. (19) is shown as

EQ-TARGET;temp:intralink-;e020;116;340θk1;2 ¼ −
bk �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2k − 8akc

p
4ak

: (20)

So the minimum of fðθkÞ is minðfðθk1Þ; fðθk2ÞÞ. In contrast, if Δ ¼ b2k − 8akc < 0, the
function fðθkÞ is a monotone function. Then the minimum of fðθkÞ is fð0Þ, and the optimization
of θk is shown as

EQ-TARGET;temp:intralink-;e021;116;256θk ¼
� 0; Δ ¼ b2k − 8akc < 0

arg min
θk

ffðθk1Þ; fðθk2Þg; Δ ¼ b2k − 8akc ≥ 0: (21)

3.2.2 Optimization of Y

For the optimization of Y, it is simplified by fixing θ, shown as

EQ-TARGET;temp:intralink-;e022;116;154Y ¼ arg min
Y

1

2σ2n
kDG − ρYk22 þ kY −Mk1: (22)

To solve Eq. (22), this algorithm is derived from the well-known variable-splitting and pen-
alty techniques. Therefore, according to semiquadratic regularization, we introduce a relaxation
factor to transform Eq. (22) into an equivalent form as follows:
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EQ-TARGET;temp:intralink-;e023;116;735ðY; zÞ ¼ arg min
Y;z

1

2σ2n
kDG − ρYk22 þ

β

2
kz − ðY −MÞk22 þ kzk1: (23)

Proposition 1. For the parameter β → ∞, the optimization of Eq. (23) is equivalent to the
optimization of Eq. (22).

Proof: For β → ∞, if kz − ðY −MÞk22 → 0 does not hold, then βkz − ðY −MÞk22 → ∞.
This is inconsistent with the optimization of Eq. (23). So kz − ðY −MÞk22 → 0 holds, and thus
z → Y −M. Namely, when β → ∞, Eq. (23) is equivalent to Eq. (22).

The optimization of Eq. (23) is decomposed into two steps: the optimization of z and the
optimization of Y.

(1) The optimization of z

For a fixed Y, the optimization of Eq. (23) is further simplified into the following forms:

EQ-TARGET;temp:intralink-;e024;116;545z ¼ arg min
z

β

2
kz − ðY −MÞk22 þ kzk1: (24)

For this, the unique minimum is given by the following two-dimensional shrinkage equation:

EQ-TARGET;temp:intralink-;e025;116;488z ¼ max

�
kY −Mk − 1

β
; 0

�
Y −M

kY −Mk1
: (25)

(2) The optimization of Y

In contrast, for a fixed z, the optimization of Eq. (23) is also simplified as shown in the
following equation:

EQ-TARGET;temp:intralink-;e026;116;380Y ¼ arg min
Y

1

2σ2n
kDG − ρYk22 þ

β

2
kz − ðY −MÞk22: (26)

Obviously, Eq. (26) is quadratic for Y, and the minimum of Y is given by the normal
equations:

EQ-TARGET;temp:intralink-;e027;116;311Y ¼ ρTDGþ σ2nβðzþMÞ
ρTρþ σ2nβI

; (27)

where I is the identity matrix. Noting that ρ ¼ diagðθkÞ is a diagonal matrix, ρTρþ σ2nβI is also a
diagonal matrix, and therefore its inverse can be easily computed.

By Eqs. (21), (25), and (27), the denoised result of the noisy image is shown as

EQ-TARGET;temp:intralink-;e028;116;229f ¼ DρY: (28)

3.3 Steps of the Method and Parameters Setting

The steps of this method are summarized below.

① The initial definition for f, D.
② The initial guess for Y using Y ¼ ½υ1; υ2 · · · υn�, ε ¼ ρυ and ε ¼ Df .
③ The optimization of θ using Eq. (21).
④ The initial values β ¼ 1.
⑤ The optimization of z and Y using Eqs. (25) and (27), then β ¼ 3β.
⑥ If β < 107, go to step ⑤.
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⑦ If kYnþ1−Ynk
kYnþ1k > ξ go to step ③.

⑧ Achieve the denoised results f using Eq. (28).

The parameter σn is empirically estimated, as shown in Refs. 29 and 30. In addition, as dis-
cussed in Sec. 3.2.2, when β → ∞, Eq. (23) is equivalent to Eq. (22). However, the larger β is,
the slower the convergence rate is. Considering the convergence rate and equivalence of the
function, the parameter β is set as an increasing sequence. The initial value is 1, and the maxi-
mum value is 106 ∼ 107. After every iteration of z and Y, the value is modified as β ¼ 3β.

4 Experimental Results and Analysis

Now the experiments are presented to demonstrate the denoising performance for ultrasonic
logging images. Moreover, we compare our method with three other denoising methods.

(1) Based on the Gaussian scale mixture model, the image denoising method that was pro-
posed in Ref. 28 and called wavelet and Gaussian scale mixture (WGSM).

(2) The method based on an adaptive threshold and optimized weighted median filter that
was proposed in Ref. 8 and called threshold and weighted median filter (TWMF).

(3) The method using nonconvex anisotropic total variation regularization that was proposed
in Ref. 14 and called non-convex anisotropic total variation (NCATV).

4.1 Denoising for Synthetic Noisy Images with Different Noise

In the following section, we employ the above three methods and our proposed method
[called Laplacian prior and sparse regularization (LPSR)] on six images contaminated by differ-
ent noises. These six original ultrasonic logging images are shown in Fig. 2. To comprehensively
evaluate the denoised image quality, peak signal to noise ratio (PSNR) and structural similarity
(SSIM) are used as criteria for evaluating the quality.

In this section, several experiments are reported to validate the denoising performance.
As stated above, we test the other three denoising algorithms on these ultrasonic logging images
and show the sample of the results for a visual comparison.

Generally speaking, when the standard deviations of noise is more than 50, the noisy image is
considered to be a severe noisy image. In our experiments, these six images are contaminated by
different noise levels and the standard deviations of noise are 20, 40, 60, and 80. The PSNR and
SSIM of all denoised images are shown in Table 2, with the best results marked in bold.

As seen from Table 2, compared with the other algorithms, our proposed LPSR method
obtained the best denoising performance. For all denoised images and their PSNR and SSIM,
the highest values of PSNR and SSIM in the majority of cases belong to the proposed LPSR. In
addition, for the WGSMmethod and the TWMFmethod, their PSNR and SSIM are significantly
less than those of the NCATV method and LPSR (our proposed method), which demonstrates
that WGSM and TWMF are ineffective on these ultrasonic logging images, especially the images
with severe noise (σn ¼ 60 and σn ¼ 80). Several reasons for these improvements were found.
First, the WGSM method and the TWMF method follow the hypothesis that the local sparse
coefficients of an image obey a Gaussian distribution. However, as demonstrated in Sec. 2, for
ultrasonic logging images, a Laplacian distribution is a more appropriate distribution. Therefore,
our method introduces the Laplacian distribution as a prior term and obtains the better perfor-
mance. Second, the NCATV method, as well as most of the total variation methods, generates
some block effects, which influence the evaluation values.

In terms of subjective vision, the denoised images of Fig. 2(d) at medium noise (σn ¼ 20) are
shown in Fig. 4. Two zoomed regions of these images are shown to the right of each result. As
seen from Fig. 4, we found that the denoised results of all algorithms have a good subjective
visual quality at the medium noise, especially for our proposed LPSR method. These denoised
images have few artifacts in the smooth regions. Of course, there are slight differences among
these algorithms. The WGSM method and the TWMF method more easily generate blur edges.
This is because WGSM and TWMF cannot preserve the edge details effectively.

Similarly, the denoised images of Fig. 2(f) at severe noise (σn ¼ 80) are shown in Fig. 5. It is
observed that the proposed LPSR outperforms the other three algorithms in preserving smooth
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regions and image edges and obtains the most visually pleasant results that have fewer
artifacts and clearer edges. We also observe that the improvement is easier to distinguish when
the noise contamination is severe, especially for the zoomed regions of these denoised
images.

4.2 Denoising for Real Ultrasonic Logging Images

In this section, we test our method on various real ultrasonic logging images. All images are
denoised using the denoising methods of WGSM, TWMF, NCATV,14 and our proposed LPSR.
The real ultrasonic logging images and their denoised results are respectively shown in Figs. 6–8.

First, for Fig. 6, all denoised results exhibit clearer image details compared with the noisy
image. However, it is seen from the enlarged rectangle that the result of WGSM [Fig. 6(b)] still

Table 2 PSNR and SSIM of the algorithms for all test images at different noise levels. (The best
results are marked in bold.)

Method Images σn ¼ 20 σn ¼ 40 σn ¼ 60 σn ¼ 80

WGSM Fig. 2(a) 28.9091/0.9880 20.8334/0.9162 16.4061/0.8072 13.4069/0.6658

TWMF 24.5454/0.9712 23.7430/0.9571 22.7220/0.9455 21.0336/0.9327

NCATV 32.0974/0.9941 29.3981/0.9897 27.4945/0.9860 24.8067/0.9636

LPSR 33.0667/0.9956 30.6525/0.9924 28.7487/0.9900 25.9856/0.9715

WGSM Fig. 2(b) 29.2242/0.9875 20.8794/0.9145 16.5157/0.7963 13.4717/0.6435

TWMF 25.8456/0.9770 24.2517/0.9652 22.6098/0.9503 20.7090/0.9324

NCATV 33.1817/0.9957 29.8544/0.9912 27.4599/0.9845 24.5384/0.9651

LPSR 33.9031/0.9963 30.9061/0.9929 28.6020/0.9884 25.6038/0.9763

WGSM Fig. 2(c) 26.5659/0.9868 20.4561/0.9419 16.2538/0.8486 13.2866/0.7089

TWMF 23.6687/0.9815 22.7173/0.9763 21.7972/0.9700 20.9506/0.9643

NCATV 30.0280/0.9942 27.4387/0.9903 25.1755/0.9846 23.4203/0.9765

LPSR 30.8152/0.9952 28.2170/0.9918 26.1760/0.9877 24.4681/0.9821

WGSM Fig. 2(d) 30.4465/0.9951 20.6872/0.9514 16.1782/0.8652 13.2636/0.7334

TWMF 26.8365/0.9915 26.3157/0.9909 25.8247/0.9902 25.9286/0.9908

NCATV 34.1903/0.9981 31.3503/0.9965 29.2408/0.9947 26.9758/0.9911

LPSR 35.5036/0.9985 32.6126/0.9973 30.3315/0.9956 27.7447/0.9924

WGSM Fig. 2(e) 30.3808/0.9858 21.0097/0.8978 16.4960/0.7715 13.4282/0.6239

TWMF 25.6654/0.9680 24.3234/0.9496 22.5329/0.9291 20.0456/0.9039

NCATV 33.1045/0.9944 30.8025/0.9907 28.6164/0.9826 25.4824/0.9600

LPSR 34.0373/0.9951 31.7769/0.9923 29.7165/0.9883 26.7546/0.9715

WGSM Fig. 2(f) 26.6814/0.9786 20.8414/0.9183 16.4542/0.7910 13.2892/0.6250

TWMF 22.0750/0.9509 21.0595/0.9375 19.9551/0.9224 18.2940/0.9041

NCATV 29.2758/0.9885 27.0489/0.9816 25.7069/0.9747 23.1234/0.9572

LPSR 29.8557/0.9892 27.8344/0.9842 26.4979/0.9793 24.3927/0.9663
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has significant noise in the denoised results. In Figs. 6(c) and 6(d), the details in the denoised
results of TWMF are over smooth. In contrast, our proposed method [Fig. 6(e)] produces a better
effect in vision over the smooth image. Second, for Fig. 7, the small fractures in our denoised
results [Fig. 7(e)] are clearest, especially in the enlarged rectangle. The same denoised effects are
also shown in Fig. 8. In particular, the denoising of ultrasonic logging images is challenging.
However, our results exhibit sharper details and fewer ringing artifacts compared with the other
methods.

Fig. 5 Denoising performance comparison on Fig. 2(f) with noise corruption. (a) Original
image; (b) noisy image (σn ¼ 80); denoised images by (c) WGSM (PSNR ¼ 13.2892);
(d) TWMF (PSNR ¼ 18.2940); (e) NCATV (PSNR ¼ 23.1234); and (f) LPSR (our method,
PSNR ¼ 24.3927).

Fig. 4 Denoising performance comparison on Fig. 2(d) with noise corruption. (a) Original
image; (b) noisy image (σn ¼ 20); denoised images by (c) WGSM (PSNR ¼ 30.4665);
(d) TWMF (PSNR ¼ 26.8365); (e) NCATV (PSNR ¼ 34.1903); and (f) LPSR (our method,
PSNR ¼ 35.5036).
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5 Conclusions and Future Work

In this paper, an image denoising method is proposed for the ultrasonic logging images with
severe noise. The denoised images of our method have clearer edges and fewer artifacts.
The success of our method benefits from three aspects. First, the sparse coefficients are simulated
by a more appropriate distribution—Laplacian distribution. Second, we use the Laplacian dis-
tribution as a prior term and propose the variational Bayesian denoising model. Finally, a

Fig. 7 Denoising performance comparison on the real ultrasonic logging images with noise.
(a) Noisy image; denoised images by (b) WGSM; (c) TWMF; (d) NCATV; and (e) LPSR (our
method).

Fig. 8 Denoising performance comparison on the real ultrasonic logging images with noise.
(a) Noisy image; denoised images by (b) WGSM, (c) TWMF, (d) NCATV, and (e) LPSR (our
method).

Fig. 6 Denoising performance comparison on the real ultrasonic logging images with noise.
(a) Noisy image, denoised images by (b) WGSM, (c) TWMF, (d) NCATV, and (e) LPSR (our
method).
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relaxation factor is introduced to solve the proposed model. Numerical experiments demonstrate
that the proposed algorithm outperforms other previous algorithms in terms of both visual
quality and objective evaluation.

However, due to the complexity of the solution of variational Bayesian model, when the size
of noisy images becomes large, it takes too much time to remove noise. For example, it takes
about 280 s to remove noise for a 512 × 512 image with medium noise (σn ¼ 20). Obviously, the
defect limits the extension of our method, and thus future research will focus on developing
parallel technology to decrease the running time.
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