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Abstract. Establishing reliable correspondences in an image pair is a prerequisite and crucial in
computer vision. It remains a difficult topic to separate true and false matches in the given puta-
tive dataset with a low inlier ratio. To address this problem, an image matching method is pro-
posed, via the local neighborhood of feature points. Grid-based motion statistics are initially
engaged to preprocess the putative dataset, especially in which the inlier ratio is low. The local
neighborhood distributions of feature points are then collected as the quality function of cor-
respondences. Progressive sample consensus is next employed to estimate a global deformation
for removing false matches. Robust experiments on nine typical image pairs with low inlier
ratios demonstrate the superiority of our proposed method over five state-of-the-art methods.
The comparison experiments on the Oxford dataset illustrate that our method outperforms the
other five image matching methods. © The Authors. Published by SPIE under a Creative Commons
Attribution 4.0 International License. Distribution or reproduction of this work in whole or in part requires
full attribution of the original publication, including its DOI. [DOI: 10.1117/1.JEI.31.2.023039]

Keywords: image matching; mismatch removal; local neighborhood; grid-based motion statis-
tics; progressive sample consensus.

Paper 210886G received Nov. 30, 2021; accepted for publication Apr. 6, 2022; published online
Apr. 29, 2022.

1 Introduction

Establishing reliable correspondences in an image pair is a fundamental problem in computer
vision, and it has been a crucial prerequisite for many computer vision tasks, such as image
restoration,1 image retrieval,2 image registration,3,4 point set registration,5 and image search.6

For example, the detailed quality of a multispectral and multimodal image registration depends
on the performance of matching.

Image matching typically consists of a two-stage strategy.7,8 A putative dataset is initially
generated, and false matches are then removed from them. In general, the putative dataset is
constructed by some feature extraction with their similar feature descriptors [e.g., scale-invariant
feature transform (SIFT)9 and oriented fast and rotated BRIEF10 (ORB)]11. As the local descrip-
tor is ambiguous, the putative dataset is contaminated by a large percentage of false matches.
When the image pairs have significant viewpoint changes, heavy occlusion, scale, and rotation
changes, the matching difficulty becomes considerably worse. Hence, a designed robust method
plays an important role in establishing reliable correspondences.

Due to simplicity and robustness, random sample consensus (RANSAC)12 is most popularly
engaged to estimate a parametric model for removing mismatches. RANSAC is a hypothesize-
and-verify method, attaining to find the smallest possible outlier-free subset to estimate a given
parametric model by resampling randomly. During the past few decades, some varieties of
RANSAC have been developed to address the false matches removal problem. Nevertheless,
it remains a challenge to attain an effective and efficient method for practical use. The challenges
mainly come from three aspects. First, a predefined parametric model is needed to construct the
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relationship of correspondences. When the underlying image transformation is nonrigid, it
becomes less efficient. Second, it plays an important role in choosing an appropriate threshold.
Based on the threshold, it separates true matches and false matches. The threshold strongly
influences the outcome of RANSAC. In general, a threshold is given through experience.
Third, a high attraction is decreasing the time consuming of attaining a good deformation.
Its running time is related to the inlier ratio, the evidence, and the minimum parameters required
for model estimation. When the inlier ratio becomes low, it has a long-running time and tends to
severely degrade.

To remove false matches in the putative dataset, several nonparametric methods are proposed.
Through presuming the motion smoothness constraints, grid-based motion statistics (GMS)13

quickly eliminates outliers with statistical measures based on the number of neighboring
matches. Locality preserving matching (LPM)14 maintains the spatial neighborhood association
among feature points reflecting the topological structures of an image scene is generally well
preserved due to physical constraints. Li et al.15 provided a new local barycentric coordinate
system for feature matching and converted it into a local structure-preserving mathematical
model. Ma et al.16 transformed the matching problem into spatial clustering with outliers and
engages the classic density-based spatial clustering of applications with noise to solve it.
However, when the inlier ratio of the putative dataset is low, their performances of removing
false matches would become worse.

To remove false matches in the given putative dataset with a low inlier ratio, an image match-
ing method is proposed, which is via the local neighborhood of feature points. GMS are initially
employed to preprocess the putative dataset for increasing its inlier ratio, especially in which the
inlier ratio is lower than 25%. The local neighborhood distributions of feature points are then
assembled as the quality function of correspondences. Progressive sample consensus is next
adopted to estimate a global deformation for removing false matches.

More concretely, there is one main contribution to our paper. The local neighborhood dis-
tribution of feature points is added as the weight of correspondence for progressive sample con-
sensus in image matching. Due to the motion slow and smoothness constraints, many matches
are likely to be inliers in a small neighborhood of a true match.

The remainder of this paper is organized as follows. Section 2 briefly reviews past image
matching methods. In Sec. 3, an image matching method via the local neighborhood is provided.
Section 4 presents the experimental results and discussions. Finally, Sec. 5 provides a summary
and concluding remarks.

2 Related Works

Existing incorrect matches removal works can be roughly classified into three major categories,
i.e., RANSAC-like methods, nonparametric methods, and learning-based methods. We go over a
few representative methods and present them below.

2.1 RANSAC-Like Methods

RANSAC is most popularly engaged to estimate a parametric model for removing incorrect
matches. During the past few decades, numerous varieties of RANSAC have been proposed
to attain better performance, such as spatial consistency on RANSAC (SC-RANSAC),17

progressive sample consensus (PROSAC),18 EVSAC,19 locally optimized RANSAC
(LO-RANSAC),20 graph cut RANSAC (GC-RANSAC),21 and MAGSAC.22 SC-RANSAC
exploits spatial relations between feature points in two images for increasing the inlier ratio.
The hypothesis is generated by utilizing a few high-scored corresponded points. Similarly,
Tang et al.23 adopted GMS to filter the putative dataset, and wang et al.24 integrated locality
preserving constraints to remove mismatches by preprocessing the dataset. PROSAC samples
are taken from increasingly larger sets of top-ranked correspondences, with the linear ordering
determined by a similarity function on the set of correspondences. To speed up accurate hypoth-
esis generation, EVSAC uses a probabilistic framework to assign a confidence value to each
match. LO-RANSAC engaged a local optimization process to estimate the deformation.
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When a current best model is found, GC-RANSAC implements the graph cut strategy by exploit-
ing the spatial coherence in the local optimization step. MAGSAC introduces δ-consensus to
eliminate the need for predefining a threshold. Furthermore, when dealing with image pairs that
undergo extensive nonrigid transformations, RANSAC-like methods become less efficient.

2.2 Nonparametric Methods

To address the aforementioned issue, several nonparametric methods have been investigated,
including vector field consensus (VFC),25 LPM,14 robust feature matching based on spatial clus-
tering algorithm with noisy samples (RFM-SCAN),16 and GMS. VFC employs maximum like-
lihood estimation for parameters in the mixed probabilistic model to estimate the probability of
inliers, assuming that noise around inliers and outliers emanated from independent distributions.
Due to physical restrictions, LPM preserves the spatial neighborhood association among feature
points reflecting the topological structures of an image scene. To address the issue, RFM-SCAN
transforms it into spatial clustering with outliers and adopts the classic density-based spatial
clustering of applications with noise. GMS swiftly eliminates outliers using statistical measures
based on the number of neighboring matches by assuming motion smoothness constraints.
Hence, GMS can be adopted to preprocess the putative dataset for boosting the inlier ratio.

2.3 Learning-Based Methods

Learning-based methods are another technique to deal with the feature matching problem,
including learning to find good correspondences (LFGC),26 mining reliable neighbors for robust
feature correspondences (NM-NET),27 learning a two-class classifier for mismatch removal
(LMR),28 and learning feature matching graph neural networks (SuperGlue).29 LFGC engaged
a deep network to find geometrically consistent correspondences. For correspondence selection,
NM-Net presented a deep classification network that fully mined compatibility-specific locality.
LMR embraces a supervised learning technique to learn a two-class classifier through the con-
sensus of local neighborhood structures. In SuperGlue, finding the partial assignment between
two sets of local features is considered as learning feature matching. Even though deep learning
architectures generate better representations than handcrafted representations, the putative set
still contains a significant number of mismatches.

3 Method

Before introducing our proposed method, the gird-based motion statistics are initially employed
to increase the inlier ratio proportion of the putative dataset. The progressive sample consensus is
then engaged to boost the process of estimating deformation. The feature point distribution in the
local neighborhood of a certain feature point is investigated in the introduction of our proposed
method, and it plays a significant role in image matching.

3.1 Grid-Based Motion Statistics

A GMS algorithm is a nonparametric method of image matching, which rapidly removes the
mismatches from the putative dataset. GMS assumes that the motion is slow and smooth. It
presumes that many correspondences are more likely to be true in a small neighborhood of cor-
rect matching points due to motion smooth. Conversely, abundant correspondences are more
likely to be the outliers which are in the neighborhoods of incorrect matching points.

Suppose that image pair fA; Bg have fM;Qg feature points, respectively.
C ¼ fc1; c2; : : : ; ci; : : : ; cMg is the set of all nearest-neighborhood feature correspondences
from A to B. C has cardinality jCj ¼ M. It analyzes the local support of each correspondence
to divide C into sets of true matches and mismatches. Given fa; bg is one region in the image
pair fA; Bg, which have fm; qg feature points, respectively. da indicates one of the m feature
points in the region a. Assume the matching probability of each feature is independent and given
da has probability t of matching correctly. When the matching is false, its nearest-neighbor
match can lie in any of the Q possible locations. Thus,
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EQ-TARGET;temp:intralink-;e001;116;735PðdbajdfaÞ ¼ fq∕Q; (1)

where dba is one correspondence from the region a to the region b, and dfa denotes that the match
is false. f is a factor.

Given Tab indicates that the regions fa; bg view the same location. Let Pt ¼ PðdbajTabÞ be
the probability that, given fa; bg view the same location, feature da’s nearest neighbor is in
region b. Thus,

EQ-TARGET;temp:intralink-;e002;116;649

Pt ¼ PðdbajTabÞ
¼ PðdtajTabÞ þ Pðdfa; dbajTabÞ; (2)

where dta indicates that the match is true. As the matching probability of each feature is inde-
pendent, there is the following equation:

EQ-TARGET;temp:intralink-;e003;116;574PðdtajTabÞ ¼ PðdtaÞ ¼ t: (3)

Through Bayesian rule,
EQ-TARGET;temp:intralink-;e004;116;529

Pðdfa; dbajTabÞ ¼ PðdfajTabÞPðdbajdfa; TabÞ
¼ PðdfaÞPðdbajdfaÞ

¼ ð1 − tÞfq
Q

: (4)

By Eqs. (3) and (4), Eq. (2) can be obtained
EQ-TARGET;temp:intralink-;e005;116;436

Pt ¼ PðdbajTabÞ

¼ tþ ð1 − tÞfq
Q

: (5)

Given Fb
a denotes that the regions fa; bg view the different location. Let Pf ¼ PðdbajFabÞ be

the probability that, given fa; bg view the different locations, feature da’s nearest neighbor is in
region b. The similar processing method as Eq. (2), Pf can be obtained,

EQ-TARGET;temp:intralink-;e006;116;335

Pf ¼ PðdbajFabÞ
¼ Pðdfa; dbajFabÞ
¼ PðdfajFabÞPðdbajdfa; FabÞ
¼ PðdfaÞPðdbajdfaÞ

¼ ð1 − tÞfq
Q

: (6)

Given Si is a measure of neighborhood support:

EQ-TARGET;temp:intralink-;e007;116;207Si ¼ jCij − 1; (7)

whereCi ⊆ C is the subset of matches between regions fa; bg of match ci. Since the matching of
each feature is independent, using Eqs. (5) and (6), it can be approximated that the distribution of
Si, the number of matches in a neighborhood of match ci, with a pair of binomial distribution:

EQ-TARGET;temp:intralink-;e008;116;140Si ∼
�

Bðn; PtÞ; if ci is true
Bðn; PfÞ; if ci is false

; (8)

where n is the number of matches in a neighborhood of match ci. Through Eq. (8), compared
with the true matches, the distribution of the neighborhood scores S of the false matches has a
different distribution. The probability distributions of neighborhood scores of true and false
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matches are shown in Fig. 1. Therefore, a threshold is chosen to separate true matches from the
putative dataset.

In GMS, the images A and B are divided into 20 × 20 nonoverlapping grids. For each grid
(cell) in A or B, the grid contains the maximum amount of correspondences. Sab is a measure of
neighborhood support in cell-pair fa; bg. Sab can be estimated as

EQ-TARGET;temp:intralink-;e009;116;535Sab ¼
Xk¼9

k¼1

jCakbk j; (9)

where jCakbk j is the amount of correspondences in the cell-pair fak; bkg. All correspondences in
cell-pair fa; bg are considered as inliers if

EQ-TARGET;temp:intralink-;e010;116;460cell − pairfa; bg ∈
�
True; if Sab > τa ¼ α

ffiffiffiffiffi
na

p
False; otherwise

; (10)

where the true indicates that the correspondences are inliers. Conversely, the false represents that
the correspondences are outliers. τa is the threshold approximated by α

ffiffiffiffiffi
na

p
. The α is a given

parameter and na is the average amount of correspondences.

3.2 Progressive Sample Consensus

Progressive sample consensus is a variant of RANSAC that regards the impact of sample prob-
ability. The dataset is initially sorted tentative matches in descending order by a quality function
e:

EQ-TARGET;temp:intralink-;e011;116;305ci; cj ∈ C∶i < j ⇒ eðciÞ ≥ eðcjÞ: (11)

A sample m is a subset of M tentative matches, and its quality function is defined as the
lowest quality of a match included in the sample:

EQ-TARGET;temp:intralink-;e012;116;248eðmÞ ¼ min
ci∈Cm

eðciÞ: (12)

After the samples of size m out of M data points are fulfilled, the samples are sorted in
descending order according to Eq. (12).

Let Tq be an average number of samples from the tentative dataset which is a set of q
matches:

EQ-TARGET;temp:intralink-;e013;116;161Tq ¼ TM

�
q
m

�
�
M
m

� ¼ TM Π
m−1

i¼0

q − i
M − i

; (13)

where TM is an average number of samples from the entire dataset. By Eq. (13), Tqþ1 could be
recursively defined as

False True

Fig. 1 Probability distributions of neighborhood scores of true and false matches.
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EQ-TARGET;temp:intralink-;e014;116;735Tqþ1 ¼ TM Π
m−1

i¼0

qþ 1 − i
M − i

¼ qþ 1

kqþ 1 −m
Tq: (14)

When q < m, Tq ¼ 0, and with Tm ¼ 1. The value of Tq (q > m) can be obtained through
Eq. (14). Then, if the value is not an integer, T 0

q ¼ 1 is defined, and

EQ-TARGET;temp:intralink-;e015;116;673T 0
qþ1 ¼ T 0

q þ dTqþ1 − Tqe: (15)

Thence, the growth function is defined as

EQ-TARGET;temp:intralink-;e016;116;628gðkÞ ¼ minfq∶T 0
q ≥ kg; (16)

where k is the k’th sample. The sampling subset can be expanded according to Eq. (16).
When the probability that the correspondences are by chance inliers to an arbitrary incorrect

model is small than η, the iteration process will end. Besides, when the number of iterations
comes to the maximum, the process will end too. η is typically set to 95% or 99%, and β indicates
the inlier ratio. In estimating a homographic matrix, the probability of an all-inliers sample is
approximately equal to β4:

EQ-TARGET;temp:intralink-;e017;116;523ð1 − β4Þk < 1 − η; (17)

where k is the iteration number. Equation (17) could be further transformed to

EQ-TARGET;temp:intralink-;e018;116;479k > t ¼ logð1 − ηÞ
logð1 − β4Þ : (18)

When k satisfies Eq. (18), it is supposed that an all-inliers sample has already occurred.
Figure 2 exhibits the curve of t with respect to β when η1 ¼ 0.95 and η2 ¼ 0.99. When the
inlier ratio is lower than 20%, Fig. 2 reveals that the iteration number increases severely as the
inlier ratio decreases.

3.3 Image Matching via the Local Neighborhood

This section introduces the proposed method, which is an image matching method via the local
neighborhood. Due to the motion slow and smoothness constraints, many matches are likely to
be inliers in a small neighborhood of a true match. Thence, it becomes more interested in ana-
lyzing the local neighborhood distribution of the feature points. Figure 3 shows an example of a
graffiti image and ORB feature points distribution after GMS preprocessing. Figure 3(a) shows a
graffiti image with 20 × 20 grids. Figure 3(b) shows ORB feature points distribution of the red
box in image Fig. 3(a).

t

1
=0.95

2
=0.99

Fig. 2 The curve of t with respect to β, when η1 ¼ 0.95 and η2 ¼ 0.99. β indicates the inlier ratio.
t is the iteration number in which an all-inliers sample is found.
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In Fig. 3(b), there are abundant feature points in the local neighborhood of the feature point
named di. Conversely, there is just a small amount of feature points in the local neighborhood of
the feature point named dj. Through the motion slow and smoothness constraints, di are more
likely to be a true match than dj. Assume that it is subject to normal distributionNð0; δÞ, which is
the distribution of mutual influence between feature points:

EQ-TARGET;temp:intralink-;e019;116;483GðΔx;Δy; σÞ ¼ 1

2πσ2
e−ðΔx2þΔy2Þ∕2σ2 ; (19)

whereΔx is the difference of the abscissa values of the two points, andΔy is the difference of the
ordinate value of the two points. An apposite δ is chosen to count the amount of the feature points
in the local neighborhood of a certain feature point, which was denoted by w:

EQ-TARGET;temp:intralink-;e020;116;405wi ¼ jdij; (20)

where di is the i’th feature point. K-D tree30 is adopted to quick and efficiently calculate the
number of feature points. w is as a weight of one correspondence. Hence, our proposed method
adds the weight of one correspondence in image matching, combining the GMS and progressive
sample consensus. The proposed method is an image matching method via the local neighbor-
hood, outlined in Algorithm 1.

Algorithm 1 Our image matching method.

Input: an image pair fA;Bg, parameters α; r ; η; N; θ

Output: inliers

1 Detect ORB feature points and calculate their descriptors;

2 Generate a putative set C ¼ fðx i ; y i ÞgMi¼1 using brute-force matching;

3 Compute Sab and τa using Eqs. (9) and (10);

4 Obtain a reliable tentative set Cl ¼ fðx i ; y i ÞgLi¼1 using Eq. (10);

5 Calculate weight w using Eq. (20);

6 Sort the reliable tentative set Cl ¼ fðxi ; y i ÞgLi¼1 in descending order basing on w ;

7 Semirandom sample, computer model parameters, and verify model using Eqs. (15) and (18);

8 Identify inliers by the reprojection error.

Fig. 3 An example of a graffiti image and ORB feature points distribution after GMS’s preprocess-
ing. (a) A graffiti image with 20 × 20 grids. (b) ORB feature points distribution of the red box in the
image (a) after GMS preprocessing.
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4 Experimental Results

In this section, we first test the influence of search radius. As the inlier ratio is an important factor
in image matching, we then test the robustness of our proposed method on nine typical image
pairs with low inlier ratios from the Oxford31 and Heinly32 datasets and compare it with the other
six state-of-the-art methods, such as RANSAC, GC-RANSAC, PROSAC, GMS, LPM, and
RFM-SCAN. Furthermore, we test the image matching capability of our proposed method
on the Oxford dataset.

In experiments, the open-source toolbox OpenCV 3.3 is engaged to extract 10,000 ORB
feature points. Brute-force matching is employed to generate the putative dataset. In our pro-
posed method, RANSAC, GC-RANSAC, and PROSAC, the termination probability is set to
0.01, and the number of iterations is set to 500 to get a good balance between performance
and speed. The scale and rotation variables are both set to true in GMS. The reprojection thresh-
old is set to 3 pixels or 2.5 pixels to identify the true match according to the dataset. The other
parameters of each algorithm are set according to the authors’ suggestions. The experiments are
performed on a laptop PC with an Intel Core i5-7200U, 2.5 GHz CPU, and 16 GB of RAM.

4.1 Experimental Dataset

The experimental dataset is the Oxford and Heinly datasets. The Oxford dataset is composed
of eight categories of 40 image pairs in total, including bikes, trees, graffiti, wall, bark, boat,
Leuven, and UBC. The images involve image blur (bikes, trees), viewpoint change (graffiti,
wall), scale and rotation (bark, boat), light change (Leuven), and JPEG compression (UBC).
The Heinly dataset includes 40 images, which suffer from dense or sparse viewpoint changes,
illumination, pure large-scale zoom, or rotation. Several examples are shown in Fig. 4 from the
Oxford and Heinly datasets. Meantime, it provides with the ground truth homographic matrices.

4.2 Evaluation Metrics

To quantitatively evaluate the performance of our proposed method, we use three metrics, such
as precision, recall, and F-score. Precision is defined as the ratio of the identified correct match
number and the whole detected match number:

Fig. 4 Examples of image pairs in the Oxford and Heinly datasets.
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EQ-TARGET;temp:intralink-;e021;116;735Precision ¼ TP

TPþ FP
; (21)

where TP denotes the identified correct matches, FP denotes the identified incorrect matches.
Recall reflects the proportion of the identified correct matches in the ground truth matches:

EQ-TARGET;temp:intralink-;e022;116;679Recall ¼ TP

TPþ FN
; (22)

where FN denotes the correct matches, which are mistaken for the incorrect matches. F-score is a
balance that combines the metrics of precision and recall. The F-score is calculated as follows:

EQ-TARGET;temp:intralink-;e023;116;613F − score ¼ 2 × Precision × Recall

Precisionþ Recall
: (23)

4.3 Influence of Search Radius

In this section, we test the influence of search radius r. Radius r indicates the search range near a
certain feature point. If r is small, the search range is limited, even ineffective. If r is large, the
search range will increase, which will lead to an increase in running time.

As the images are normalized in our proposed method, we set r with values 0.01, 0.02, and
0.025. Figure 5 reports the inlier ratio, precision, recall, and f-score of our proposed method with
these three cases. The average inlier ratio of the Oxford dataset is 40.92%. When r is 0.02 and
0.025, the average precision is 92.39%. When r is 0.01, the average precision is 92.11%. When r
is 0.02 and 0.025, the precision is higher than when r is 0.01. When r is 0.025, it has the best
average recall (95.01%), followed by when r is 0.02 (93.88%) and when r is 0.01 (93.54%). In

(a) (b)

(c) (d)

Fig. 5 (a) Inlier ratio, (b) precision, (c) recall, and (d) f -score of our proposed method with respect
to the cumulative distribution on the Oxford dataset, which r is set to 0.01, 0.02, and 0.025. The
numbers in the boxes represent the average inlier ratio, precision, recall, and f -score.
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the performance of f-score, our proposed method with these three cases obtains the same results
as the recall.

Table 1 gives the average running time (excluding the cost of ORB feature extraction and
GMS) results. When r is 0.01, it has the smallest average running time (4.35 ms), followed by
when r is 0.02 (4.75 ms) and when r is 0.025 (4.86 ms). Regarding the running time and a trade-
off of the performance of precision, recall, and f-score, r is set to 0.02 in our experiments
throughout this study.

4.4 Robustness Test

In this section, we test the image matching capability of our proposed method on nine typical
image pairs with low inlier ratios from the Oxford and Heinly datasets. We compare our pro-
posed method with six other state-of-the-art methods, such as RANSAC, GC-RANSAC,
PROSAC, GMS, LPM, and RFM-SCAN. For fair comparisons, we use the implementations
of these algorithms from the open-source websites and set the parameters of each algorithm
as reported by the authors. LPM and RFM-SCAN is Matlab code fulfilling in Matlab
R2016a. RANSAC, GC-RANSAC, PROSAC, GMS, and our proposed method are c++ code
performing in Ubuntu 16.04.

From the Oxford and Heinly datasets, nine typical image pairs are selected, which have low
inlier ratios. In the boat category, the inlier ratio of the pair of image1 and image6 is 3.24%. Their
inlier ratios are 3.45% (day_night), 6.05% (graffiti), 7.72% (bark), 7.72% (trees), 7.97% (wall),
12.38% (Venice), 22.04% (Semper), and 27.37% (bikes), respectively. We first provide intuitive
results of six image matching methods on the bark and wall image pair presented in Figs. 6 and 7,
respectively. Figure 6 shows the image matching results of LPM, RFM-SCAN, RANSAC, GMS,
GC-RANSAC, and our proposed method on the bark image pair. The bark image pair suffers
from scale and rotation. Its inlier ratio is 7.72%. The precision, recall, and f-score of our pro-
posed method are 97.73%, 61.27%, and 75.32%, respectively. Furthermore, PROSAC failed in
image matching and was not shown in Fig. 6. In RFM-SCAN, there are many matches of false
positives. GC-RANSAC attains the best performance, followed by our proposed method and
LPM. Figure 7 exhibits the image matching results of the six image matching methods on the
wall image pair. The wall image pair involves viewpoint change. Its inlier ratio is 7.97%. The
precision, recall, and f-score of our proposed method are 86.36%, 95.36%, and 90.64%, respec-
tively. PROSACmoreover flunked on the wall image pair and was not shown in Fig. 7. Its reason
may be a small number of iterations. Compared with the other five methods, RANSAC has more

Table 1 Average running time of our proposed method with three cases (r is set to 0.01, 0.02,
and 0.025) on the Oxford dataset. Bold indicates the best result.

r ¼ 0.01 r ¼ 0.02 r ¼ 0.025

Time (ms) 4.35 4.75 4.86

Fig. 6 Image matching results of LPM, RFM-SCAN, RANSAC, GMS, GC-RANSAC, and our pro-
posed method on the bark image pair. Its inlier ratio is 7.72%. The blue line indicates a match of
true positive, and the red line indicates a match of false positive. For visibility, at most 100 ran-
domly selected matches are presented in the image pair, and the false negatives are not shown.
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matches of false positive on the wall image pair. Figure 7 shows that our proposed method and
GC-RANSAC achieve almost the best performance.

Figure 8 reports the curves of inlier ratio, precision, recall, and f-score with respect to the
nine selected image pairs, which are the qualitative results of the seven methods. The average
inlier ratio of the selected image pairs is 10.88%. PROSAC failed in image matching on seven
image pairs. In the putative dataset, the local neighborhood of true match points is contaminated
by plenty of false match points. w consequently fails to well reflect the weights of correspond-
ences. Hence, it demonstrates that GMS preprocessing plays a significant role in our proposed
method. Our proposed method obtains the best average precision (79.60%), followed by
GC-RANSAC (78.05%) and RANSAC (67.21%). Based on the locality preserving constraint,

(a) (b)

(c) (d)

Fig. 8 (a) Inlier ratio, (b) precision, (c) recall, and (d) f -score of RANSAC, GC-RANSAC,
PROSAC, GMS, LPM, RFM-SCAN, and our proposed method with respect to the six image pairs
selected from the Oxford dataset. The numbers in the boxes represent the average inlier ratio,
precision, recall, and f -score.

Fig. 7 Image matching results of LPM, RFM-SCAN, RANSAC, GMS, GC-RANSAC, and our pro-
posed method on the wall image pair. Its inlier ratio is 7.97%. The blue line indicates a match of
true positive, and the red line indicates a match of false positive. For visibility, at most 100 ran-
domly selected matches are presented in the image pair, and the false negatives are not shown.
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the average f-score of LPM is 58.03%. GC-RANSAC and our proposed method attain the better
average f-score 83.36% and 79.07%, respectively. Figure 8 shows that our proposed method has
stronger robustness to establish reliable correspondences than RANSAC, PROSAC, GMS, LPM,
and RFM-SCAN.

4.5 Results on Image Pairs

In this section, we test the image matching capability of our proposed method on the Oxford
dataset and compare it with the other six methods, such as RANSAC, GC-RANSAC, PROSAC,
GMS, LPM, and RFM-SCAN. We first provide intuitive results of our proposed method on two
typical image pairs as presented in Fig. 9. The interfering type of the graffiti and bikes image pair
in Fig. 9 are viewpoint change and blur, respectively. Hence, it is a relative challenge to establish
reliable feature matches. Our result is presented on the right side, which illustrates that our pro-
posed method can produce many matches of true positive, few matches of false positive, and
false negative. We also present the results of LPM (left) and RANSAC (middle). As shown in
Fig. 9, although the inlier ratio of the bikes image pair is higher than the graffiti image pair, the
performance of LPM degrades due to various image changes. RANSAC obtains a similar per-
formance to LPM. We can observe that our proposed method achieves the best performance.

Figure 10 shows the curves of inlier ratio, precision, recall, and f-score with respect to the
cumulative distribution, which are the image matching results of the seven methods on the
Oxford dataset. When the inlier ratio is lower than 5%, RANSAC, GC-RANSAC, GMS, and
our proposed method fail. Meanwhile, PROSAC flunked in most cases. In the putative dataset,
the local neighborhood of true match points is contaminated by many false match points.
w consequently fails to well reflect the weights of correspondences. Furthermore, a small num-
ber of iterations is not enough for PROSAC to estimate the deformation. Hence, we do not
report these situations. When the inlier ratio is higher than 27.03%, our proposed method,
GC-RANSAC, and RANSAC achieve similar precision. When the inlier ratio is lower
than 27.03%, our proposed method obtains more precision than the other five methods.
GC-RANSAC has the best average precision (92.49%), followed by our proposed method
(92.39%) and RANSAC (89.25%). RANSAC gains the fewest average recall (80.10%), due
to substandard performance in the putative dataset with an inlier ratio lower than 23.86%. It
indicates that RANSAC tends to severely degrade with the decreasing inlier ratio. RFM-SCAN
obtains the best average recall (98.02%), followed by GC-RANSAC (97.31%) and our pro-
posed method (93.88%). Similar to the precision performance, when the inlier ratio is higher
than 27.03%, our proposed method, GC-RANSAC, and RANSAC achieve a similar f-score.
When the inlier ratio is higher than 34.97%, GMS, LPM, and RFM-SCAN obtain a similar
f-score. When the inlier ratio is lower than 27.03%, our proposed method and GC-RANSAC
obtain better f-score than the other four methods. We observe that our proposed method out-
performs the other five state-of-the-art methods. Figure 10 shows that our proposed method

Fig. 9 Image matching results of (a) LPM, (b) RANSAC, and (c) our proposed method on two
typical image pairs. The inlier ratio of the graffiti image pair (top row) is 20.94%. The inlier ratio
of the bikes image pair (bottom row) is 27.37%. The blue line indicates a match of true positive, the
red line indicates a match of false positive. For visibility, at most 100 randomly selected matches
are presented in the image pair, and the false negatives are not shown.
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has the strongest robustness to establish reliable correspondences than RANSAC, PROSAC,
GMS, LPM, and RFM-SCAN, especially in which the inlier ratio is lower than 25%.

Table 2 presents the average running time (excluding the cost of ORB feature extraction)
results. RANSAC, GC-RANSAC, PROSAC, GMS, LPM, RFM-SCAN, and our proposed
method acquires 0.021, 0.310, 0.013, 0.252, 0.163, 15.752, and 0.267 s, respectively. Table 2
shows that GC-RANSAC takes the most time compared to RANSAC, PROSAC, and our pro-
posed method. Although our proposed method combines the GMS and progressive sample con-
sensus, the average running time of our proposed method is less than the sum of RANSAC and
GMS. It indicates that it decreases the running time though engaging the progressive sample
consensus.

5 Conclusion

This paper reports an image matching method via the local neighborhood. A key characteristic of
our approach is that it is well robust to establish reliable correspondences with a low inlier ratio,
especially in which the inlier ratio is lower than 25%. The GMS are engaged to increase the inlier
proportion of the putative set. The local neighborhood distribution of feature points is then

Table 2 Average running time of the six methods on the Oxford dataset. Bold indicates the best
result.

RANSAC GC-RANSAC PROSAC GMS LPM RFM-SCAN Our

Time (s) 0.021 0.310 0.013 0.252 0.163 15.752 0.267

(a) (b)

(c) (d)

Fig. 10 (a) Inlier ratio, (b) precision, (c) recall, and (d) f -score of RANSAC, GC-RANSAC, GMS,
LPM, RFM-SCAN, and our proposed method with respect to the cumulative distribution on the
Oxford dataset. The numbers in the boxes represent the average inlier ratio, precision, recall, and
f -score.
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gathered as the weights of matches. The progressive sample consensus is employed to estimate a
global deformation for removing mismatches. Robust experiments on nine typical image pairs
with low inlier ratios illustrate the superiority of our proposed method over RANSAC, PROSAC,
GMS, LPM, and RFM-SCAN. The comparison experiments on the Oxford dataset demonstrate
that our proposed method outperforms the other five image matching methods.
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