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Abstract. The visible quality assessment of images is important to evaluate the performance of image process-
ing methods such as image correction, compressing, and enhancement. The structural similarity is widely used
to determine the visible quality; however, existing structural similarity metrics cannot correctly assess the
perceived human visibility of images that have been slightly geometrically transformed or images that have
undergone significant regional distortion. We propose an improved structural similarity metric that is more
close to human visible evaluation. Compared with the existing metrics, the proposed method can more correctly
evaluate the similarity between an original image and various distorted images. © The Authors. Published by SPIE
under a Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of this work in whole or in part requires full
attribution of the original publication, including its DOI. [DOI: 10.1117/1.JEI.25.6.063015]
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1 Introduction
It is crucial to assess objectively image qualities for
image processing applications because the assessments
can compare with results of other methods to evaluate the
performance. For measuring the performance of image
correction, compressing and enhancing methods, such as
denoising, JPEG compression, super-resolution, and frame
rate upconversion,1–7 and almost all objective evaluation
metrics do not completely agree with the perceived subjec-
tive visibility of humans, while subjective evaluation is
usually too inconvenient, time-consuming, and expensive.8

The simplest and most widely used metrics are mean
squared error (MSE) and peak signal-to-noise ratio (PSNR);
MSE is computed by averaging the squared differences of
two signals, and PSNR is the ratio between the maximum
value (Max) of a signal and the MSE as follows:

EQ-TARGET;temp:intralink-;e001;63;307MSE ¼ 1

M

XM
i¼1

ðxi − yiÞ2; (1)

EQ-TARGET;temp:intralink-;e002;63;258PSNR ¼ 10 log10

�
Max2

MSE

�
; (2)

where xi and yi are the element of two signals, and M is the
number of elements, e.g., the elements in image signals indi-
cate pixels and the number of pixels should be equal to M.
However, the MSE and PSNR are not very well matched to
perceived visible quality.9–13 A lot of image quality assess-
ment methods based on error sensitivity have been pro-
posed,14–19 and they use the human visual system (HVS),
contrast sensitivity function, discrete cosine transform,
wavelet transform, and so forth. However, the similarity
errors assessed by them may quite differ with the loss of

qualities, so some distortions may be clearly visible but
these errors are not clearly observed in them.8

Recently, structural similarity (SSIM) has typically been
used to determine visible quality.8,20 This is a full reference
image quality assessment method and it indicates how much
an image is similar to the original image. It has three main
components, which are structure, illuminance, and contrast.
However, the components, especially structure component,
are highly sensitive to translation, scaling, and rotation of
an image. This means that although when images are trans-
lated and rotated as little as an unrecognizable amount, the
SSIM is sensitively decreased.21 Moreover, it may overesti-
mate images that have undergone regional distortions such
as JPEG compression.

In this paper, we aim at developing an improved structural
similarity metric to outperform the typical SSIM, which can
be used to overcome potential drawbacks. The proposed met-
ric uses an improved structure comparison, and additionally
uses a sharpness comparison.

2 SSIM and Its Drawbacks
Since humans usually use contrast, color, and frequency
changes in their image quality measures,22 the SSIM uses
the luminance, contrast, and structure comparison shown in
Fig. 1.8,22 The SSIM of two images x and y is defined by
the combination fðÞ of three components as follows:8

EQ-TARGET;temp:intralink-;e003;326;199SSIMðx; yÞ ¼ f½lðx; yÞ; cðx; yÞ; sðx; yÞ�; (3)

where l, c, and s are the luminance, contrast, and structure
comparison functions, respectively, defined by

EQ-TARGET;temp:intralink-;e004;326;146lðx; yÞ ¼ 2μxμy þ C1

μ2x þ μ2y þ C1

; (4)

EQ-TARGET;temp:intralink-;e005;326;102cðx; yÞ ¼ 2σxσy þ C2

σ2x þ σ2y þ C2

; (5)
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EQ-TARGET;temp:intralink-;e006;63;555sðx; yÞ ¼ σxy þ C3

σxσy þ C3

; (6)

where μx and σx denote the mean and the standard deviation
of x; μy and σy denote the mean and the standard deviation of
y; σxy denotes the covariance between x and y; and C1, C2,
and C3 are constants used to avoid instability when the
denominators are very close to zero. The values of l, c,
and s are in [0, 1] and they indicate higher similarities for
each comparison function when the values are close to 1.

The local statistics are calculated within the local window
having circular symmetric Gaussian weights, which are
w ¼ fwiji ¼ 1;2; : : : ; Ng and

P
N
i¼1 wi ¼ 1 as follows:

EQ-TARGET;temp:intralink-;e007;326;522μx ¼
XN
i¼1

wixi; (7)

Fig. 1 Diagram of the SSIM measurement system.

Fig. 2 Comparison of image similarity.
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EQ-TARGET;temp:intralink-;e008;63;752σx ¼
�XN
i¼1

wiðxi − μxÞ2
�1∕2

; (8)

EQ-TARGET;temp:intralink-;e009;63;713σxy ¼
XN
i¼1

wiðxi − μxÞðyi − μyÞ; (9)

where i is an index of the pixels in the Gaussian window and
N is the total pixel number of the Gaussian window.

The combination of all comparisons between two images
x and y is

EQ-TARGET;temp:intralink-;e010;63;624SSIMðx; yÞ ¼ ½lðx; yÞ�α · ½cðx; yÞ�β · ½sðx; yÞ�γ; (10)

where α > 0, β > 0, and γ > 0 are parameters used to adjust
the relative importance. In order to simplify the expression
and equalize the relative importance of the three components,
they are generally set α ¼ β ¼ γ ¼ 1 and C3 ¼ C2∕2, so we

also set the parameters in the same manner.8,21 The results in
a specific form of the SSIM index as follows:

EQ-TARGET;temp:intralink-;e011;326;730SSIMðx; yÞ ¼ ð2μxμy þ C1Þð2σxy þ C2Þ
ðμ2x þ μ2y þ C1Þðσ2x þ σ2y þ C2Þ

: (11)

To measure a single overall quality measure of the entire
image, a mean SSIM (MSSIM) index is used as follows:

EQ-TARGET;temp:intralink-;e012;326;662MSSIMðX;YÞ ¼ 1

M

XM
i¼1

SSIMðxi; yiÞ; (12)

where X and Y are the original and the distorted images,
respectively, and M is the number of pixels of images as
used in Eq. (1).8 MSSIM can be interpreted as a mean value
of the SSIM index map.23 Because SSIM values have the
range of [0, 1], MSSIM also has the same range.

Fig. 3 Comparison of the original, ST, and JPEG compression image.

Table 1 Comparison of MSSIM and its components with MSSIM-S and its components about Fig. 3.

Images MSSIM l̄ðx; yÞ c̄ðx; yÞ s̄ðx;yÞ MSSIM-S Mean of ~sðx; yÞ h̄ðx;yÞ
ST 0.500 0.965 0.898 0.528 0.660 0.819 0.825

JPEG 0.706 0.995 0.917 0.771 0.640 0.822 0.822

Fig. 4 Diagram of the proposed ISSIM-S measurement system.
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The SSIM and MSSIM can be used to measure the sim-
ilarity of two images. However, they have some drawbacks
as shown in Fig. 2 and Table 2. First, images filtered by
a low pass filter, such as a mean filter (MF), a median filter
(MedF), and JPEG compression, are evaluated as having
high similarity scores. Second, images that have been
slightly distorted by some geometric transformations, such
as spatial translation (ST) and rotation (RT), are evaluated
as having low similarity scores.

3 New Structural Similarity
The main component of the SSIM that causes drawbacks is
the structure comparison defined by Eq. (6). When we use
Eq. (3) by only combining Eqs. (4) and (5), images that are

slightly geometrically transformed do not have low similar-
ities as shown in Fig. 3 and Table 1, where l̄ðx; yÞ, c̄ðx; yÞ,
and s̄ðx; yÞ are the mean of lðx; yÞ in Eq. (4), cðx; yÞ in
Eq. (5), and sðx; yÞ in Eq. (6). In Table 1, s̄ðx; yÞ of the
ST image is very low, while s̄ðx; yÞ of the JPEG image is
higher than that of the ST image. This example shows
that the limitation of SSIM is sensitive to ST, scaling,
and RT.

To reduce the weak effect of sðx; yÞ, we define the struc-
ture comparison in a new way as follows:

EQ-TARGET;temp:intralink-;e013;326;642s̃ðx; yÞ ¼ ð2σx−σy− þ C2Þð2σxþσyþ þ C2Þ
ðσ2x− þ σ2y− þ C2Þðσ2xþ þ σ2yþ þ C2Þ

; (13)

Fig. 5 Comparison of image similarity (from left to right: the evaluating images of Fig. 2, index maps of
the SSIM, and index maps of the ISSIM-S).
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where σx− and σxþ denote the standard deviations for elements
of x smaller than and larger than μx, respectively, and
σy− and σyþ denote the same for y. In Ref. 8, structural infor-
mation in an image is defined as those attributes that represent
the structure of objects in the scene, independent of the
average luminance and contrast, and structure comparison is
conducted after luminance subtraction and variance normaliza-
tion. So sðx; yÞ is defined by the correlation between standard
scores (z-score),24 ðx − μxÞ∕σx and ðy − μyÞ∕σy. However, we
define ~sðx; yÞ as the correlation between standard deviations

for pixels having positive/negative standard scores because
σx− and σxþ can represent the structure of objects by dividing
as locally brighter and darker regions. As shown in Fig. 3 and
Table 1, the weak effect of sðx; yÞ is relatively decreased com-
pared to the original SSIM; however, the similarity of the ST
image is lower than that of the JPEG image. That is to say, the
SSIM still overestimates blurred images, when ~s is used as the
structure comparison. Therefore, we add a new component,
the sharpness comparison hðx; yÞ, which is the correlation
between the normalized digital Laplacian, defined as

Fig. 6 Comparison of image similarity (from left to right: the evaluating images, index maps of the SSIM,
and index maps of the ISSIM-S).

Fig. 7 Comparison of image similarity (from left to right: the evaluating images, index maps of the SSIM,
and index maps of the ISSIM-S).
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Table 2 Comparison of the PSNR, mean of the SSIM, mean of the
ISSIM-S, and MOS rank of “Lena” image (the rank for each metric is
shown in parentheses).

Images PSNR
Mean of
the SSIM

Mean of
the ISSIM-S MOS

MOS
rank

HE 16.781 (6) 0.908 (1) 0.766 (5) 3.182 4

MLS 15.879 (8) 0.901 (2) 0.901 (1) 3.273 3

MedF 25.757 (3) 0.785 (5) 0.693 (6) 1.636 6

IN 16.098 (7) 0.297 (8) 0.313 (8) 1.545 7

JPEG 27.293 (1) 0.805 (4) 0.773 (4) 2.818 5

MF 23.888 (4) 0.711 (7) 0.623 (7) 1.273 8

ST 25.912 (2) 0.832 (3) 0.871 (2) 5.000 1

RT 23.474 (5) 0.759 (6) 0.832 (3) 4.909 2

ρ 0.048 0.595 0.881 — —

Fig. 8 Comparison of “Einstein” image similarity (from left to right: the evaluating images, index maps of
the SSIM, and index maps of the ISSIM-S).

Table 3 Comparison of the PSNR, mean of the SSIM, mean of the
ISSIM-S, and MOS rank of “Einstein” image (the rank for each metric
is shown in parentheses).

Images PSNR
Mean of
the SSIM

Mean of the
ISSIM-S MOS

MOS
rank

HE 23.278 (3) 0.924 (2) 0.795 (2) 3.583 4

MLS 23.028 (6) 0.986 (1) 0.986 (1) 4.417 2

MedF 29.536 (1) 0.827 (3) 0.746 (4) 2.333 7

IN 23.174 (5) 0.781 (5) 0.787 (3) 2.917 5

JPEG 23.237 (4) 0.557 (6) 0.447 (8) 1.000 8

MF 27.286 (2) 0.790 (4) 0.654 (7) 2.417 6

ST 18.729 (8) 0.393 (8) 0.680 (6) 4.833 1

RT 20.517 (7) 0.555 (7) 0.704 (5) 4.333 3

ρ −0.643 −0.119 0.429 — —
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EQ-TARGET;temp:intralink-;e014;326;339hðx; yÞ ¼ 2j∇2xjj∇2yj þ C2

j∇2xj2 þ j∇2yj2 þ C2

; (14)

where ∇2x and ∇2y denote the normalized digital Laplacian
given by

EQ-TARGET;temp:intralink-;e015;326;281∇2x ¼ x − μx: (15)

The new similarity components sðx; yÞ and hðx; yÞ are
satisfied with the properties for measurement metrics as
follows:

1. Symmetry: Sðx; yÞ ¼ Sðy; xÞ;
2. Boundedness: Sðx; yÞ ≤ 1;
3. Unique maximum: Sðx; yÞ ¼ 1, if and only if x ¼ y.

As shown in Fig. 4, the mean of hðx; yÞ of the ST image is
higher than that of the JPEG image. Finally, the improved
SSIM which includes the sharpness comparison (ISSIM-S)
can be defined as

EQ-TARGET;temp:intralink-;e016;326;115ISSIM-S ¼ lðx; yÞ · cðx; yÞ · s̃ðx; yÞ · hðx; yÞ; (16)

and the proposed ISSIM-S measurement system can be
configured (Fig. 4).

Fig. 9 Comparison of image similarity for different distortion levels (the numerics in parentheses indicate
filter sizes of MF, quality factors of JPEG compression, and pixel amounts of ST).

Table 4 Comparison of the PSNR, mean of the SSIM, and mean of
the ISSIM-S for different distortion levels.

Images PSNR
Mean of
the SSIM

Mean of
the ISSIM-S

MF (3 × 3) 29.280 0.896 0.822

MF (5 × 5) 25.725 0.792 0.697

MF (7 × 7) 23.888 0.711 0.623

JPEG (20) 29.936 0.871 0.844

JPEG (10) 27.701 0.806 0.772

JPEG (5) 25.109 0.706 0.640

ST (1) 25.912 0.832 0.871

ST (2) 21.881 0.690 0.806

ST (3) 20.060 0.607 0.754
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To measure a single overall quality measure of the entire
image, a mean ISSIM-s (MISSIM-S) index may be used as
follows:

EQ-TARGET;temp:intralink-;e017;63;241MISSIM-SðX;YÞ ¼ 1

M

XM
i¼1

ISSIM-Sðxi; yiÞ: (17)

The values of ISSIM-S and MISSIM-S are also in [0, 1] and
these values indicate higher similarities when they are close
to 1.

4 Experimental Results
To evaluate the proposed similarity metric, which compares
the PSNR and the SSIM, we tested some distorted images
as shown in Fig. 2. In this test, we used an 11 × 11 circu-
lar-symmetric Gaussian weight function, with a standard
deviation of 1.5; normalized the unit sum equals to 1.
The constants were selected to be C1 ¼ ð0.01 · 255Þ2,
C2 ¼ ð0.03 · 255Þ2, and C3 ¼ C2∕2 as was done in Ref. 8.

These values seem somewhat arbitrary, but Wang et al. found
that in their experiments, the performance of the SSIM index
algorithm is fairly insensitive to variations of these values.

The local variance similarity between the original and the
histogram-equalized images is quite different because histo-
gram equalization (HE) is a nonlinear intensity transform.
However, the SSIM is evaluated to have a high similarity
score, while our new metric is evaluated as having a lower
similarity than the SSIM. The ISSIM-Ss of the images,
filtered by low pass filters, such as MF, MedF, and JPEG
compression, are also evaluated to have lower similarities
than the SSIM. In addition, the ISSIM-Ss of images that
have been slightly geometrically transformed by ST and
RTare higher than SSIMs. The results of the mean luminance
shifting (MLS) and impulsive noise (IN) images show that
the SSIMs and the ISSIM-Ss are evaluated with the same
image but the result values are different.

To compare the different index maps of the SSIM and the
ISSIM-S, the results of HE, MedF, JPEG, and MF are shown

Fig. 10 Comparison of image similarity for various scene contents.
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Table 5 Comparison of the PSNR, mean of the SSIM, and mean of
the ISSIM-S for different scene contents.

Images PSNR
Mean of
the SSIM

Mean of
the ISSIM-S

Goldhill (ST) 21.865 0.489 0.756

Goldhill (MF) 24.191 0.535 0.388

Goldhill (JPEG) 26.397 0.701 0.694

Boat (ST) 19.550 0.423 0.740

Boat (MF) 22.072 0.513 0.383

Boat (JPEG) 25.062 0.704 0.681

Fig. 11 Comparison of image similarity for various combinations of degradations.

Table 5 (Continued).

Images PSNR
Mean of
the SSIM

Mean of
the ISSIM-S

Airplane (ST) 20.141 0.664 0.801

Airplane (MF) 21.962 0.675 0.573

Airplane (JPEG) 26.356 0.805 0.751

House (ST) 24.755 0.676 0.839

House (MF) 26.362 0.766 0.636

House (JPEG) 30.557 0.825 0.759
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in Fig. 5. The pixel values of the index map are normalized
SSIM or ISSIM-S values. The index maps have different
results, and the index maps of the ISSIM-S are darker than
those of the SSIM because the MISSIM-Ss are lower than the
MSSIMs. While the index maps of the ISSIM-S for IN, ST,
and RTare brighter than those of the SSIM, because the simi-
larities of the ISSIM-S are increased than those of the SSIM
as shown in Fig. 6. The index maps of MLS are very similar
as shown in Fig. 7.

To compare the mean opinion scores (MOSs), the rank of
PSNR, mean of the SSIM, mean of the ISSIM-S, and MOS
are shown in Table 2. To measure MOSs, we showed sub-
jects the result images of each processing with the original
image, and received their opinion scores, which have ranges
of 1 (not similar) to 5 (very similar). Each comparison was
implemented one-on-one with the original image and we
randomized the order of the distorted images we showed to
minimize order effects. The number of test subjects was
17 and none of them had any problems with their eyes.
The experiments were implemented under the regulated illu-
mination conditions and display conditions.

The scores themselves are subjective and not convincing
but they can have meaning in relative comparison. Therefore,
we used MOS ranks instead of MOS itself. The rank corre-
lations by the MOS rank are also shown, where the rank
correlation is computed by Spearman’s rank correlation
coefficient (ρ)25 which is defined as follows:

EQ-TARGET;temp:intralink-;e018;63;455ρ ¼ 1 −
6
P

d2i
nðn2 − 1Þ ; (18)

where di denotes the difference of the i’th rank and n denotes
the ranking size. The rank correlation of the mean of the
ISSIM-S is closer to 1 than the others.

We compared PSNR, SSIM, ISSIM-S, and MOS with
another image shown in Fig. 8 and the results are shown
in Table 3. The types of distortion are exactly the same as
those of Table 2, but the only difference is the filter size.
The resolution of test images in Table 2 is 256 × 256 and
the filter size is 11 × 11; however, the resolution of test
images in Fig. 8 is 128 × 128 so we set the filter size as 5 × 5.

To evaluate the performance with different distortion
levels, we tested a few more images: blurred images with
different sizes of MF, images that have undergone various
loss via JPEG compression, and images differently translated
by ST (shown in Fig. 9 and Table 4). As the distortion level
increases, PSNR, MSSIM, and mean ISSIM-S decrease, no
matter the processing type. However, in ST, PSNR and
MSSIM have the lowest values when it is translated only
3 pixels according to y axis, while mean ISSIM-S does
not. ISSIM-S is also affected by translation but it is less
sensitive than PSNR and SSIM methods.

We conducted two additional experiments. First, compari-
son of ST, MF, and JPEG compression for various scene con-
tents are shown Fig. 10 and Table 5. The resolutions of the
tested images in this experiment are 256 × 256. The PSNR
and the mean of SSIM values for each image are scored
according to this order, ST < MF < JPEG. However, the mean
of ISSIM-S shows another pattern, which is MF < JPEG <
ST. The order of ISSIM-S is more reasonable than PSNR
or SSIM. This result shows that the proposed image quality
assessment method does not overestimate blurred images and

it is much less sensitive to geometric transformations, which
were one of the identified drawbacks of SSIM. Second, as
shown in Fig. 11 and Table 6, we compared the PSNR, the
mean of SSIM, and the mean of ISSIM-S for various combi-
nations of degradations. The drawback of SSIM is that it is too
sensitive to geometric translation and can be found when the
degradations are combined. This result shows that MSSIM
overvalues HE+IN while MISSIM-S evaluates moderately.
It means that MISSIM-S is much closer to HVS because
MISSIM-S is less sensitive to a small amount of geometric
translation just as HVS is.

In addition, we tested the variations of MSSIM and
MISSIM-S in terms of the size of the Gaussian window as
shown in Fig. 12, where the 11 × 11 window size is large

Table 6 Comparison of the PSNR, mean of the SSIM, and mean of
the ISSIM-S for various combinations of degradations.

Images PSNR
Mean of
the SSIM

Mean of
the ISSIM-S

Goldhill (HE + IN) 11.581 0.409 0.235

Goldhill (ST + HE) 11.151 0.325 0.253

Goldhill (IN + ST) 17.659 0.390 0.490

Boat (HE + IN) 15.982 0.538 0.306

Boat (ST + HE) 14.300 0.250 0.329

Boat (IN + ST) 17.639 0.276 0.535

Airplane (HE + IN) 16.413 0.604 0.389

Airplane (ST + HE) 15.550 0.372 0.447

Airplane (IN + ST) 18.905 0.322 0.555

House (HE + IN) 16.378 0.394 0.185

House (ST + HE) 16.363 0.275 0.239

House (IN + ST) 20.125 0.365 0.439

Fig. 12 Variations of MSSIM and MISSIM-S in terms of the size of
the Gaussian window.
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enough because the variations are very small when the
window size is larger than 11.

5 Conclusion
In this paper, we have proposed an improved structural sim-
ilarity metric using structure and sharpness comparison func-
tions to overcome the drawbacks of the SSIM metric. The
structure comparison used segmented standard deviations
by the mean, and sharpness comparison used the normalized
digital Laplacian. The proposed metric can evaluate geomet-
ric transformed images with high similarities and cannot
overestimate blurred images such as JPEG compression.
The experimental results indicate that our similarity metric
is superior to existing methods in respect to the perceived
visibility of humans. Therefore, our method can be used to
evaluate the performance of various methods such as image
enhancement, frame rate upconversion, image compression,
super-resolution, and image restoration.
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