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ABSTRACT. Significance: Multi-photon fluorescence recovery after photobleaching (MPFRAP)
is a nonlinear microscopy technique used to measure the diffusion coefficient of flu-
orescently tagged molecules in solution. Previous MPFRAP fitting models calculate
the diffusion coefficient in systems with diffusion or diffusion in laminar flow.

Aim: We propose anMPFRAP fitting model that accounts for shear stress in laminar
flow, making it a more applicable technique for in vitro and in vivo studies involving
diffusion.

Approach: Fluorescence recovery curves are generated using high-throughput
molecular dynamics simulations and then fit to all three models (diffusion, diffusion
and flow, and diffusion and shear flow) to define the limits within which accurate
diffusion coefficients are produced. Diffusion is simulated as a random walk with
a variable horizontal bias to account for shear flow.

Results: Contour maps of the accuracy of the fitted diffusion coefficient as a func-
tion of scaled velocity and scaled shear rate show the parameter space within which
each model produces accurate diffusion coefficients; the shear-flow model covers
a larger area than the previous models.

Conclusion: The shear-flow model allows MPFRAP to be a viable optical tool for
studying more biophysical systems than previous models.
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1 Introduction
Multiphoton fluorescence recovery after photobleaching (MPFRAP) is a microscopy technique
used to probe the local mobility and/or measure the diffusion coefficient of fluorescently tagged
macromolecules in living tissues.1–6 In the original “point”MPFRAP method, a stationary, high-
intensity, mode-locked laser is briefly flashed within a region of interest to generate photobleach-
ing of fluorescent molecules. The laser is then attenuated to a lower intensity to monitor still-
fluorescent molecules diffusing into the region. This results in a fluorescence recovery as a func-
tion of time curve, which can be fitted to an analytical equation from which a diffusion coefficient
can be extracted. Utilizing multiphoton excitation allows for the assessment of diffusion coef-
ficients in a three-dimensionally resolved volume. Useful variations of this original “point”
MPFRAP exist whereby lines or other bleach patterns are generated, and diffusion coefficients
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or simple recovery times are calculated.7–9 However, “point” MPFRAP is the technique we are
referring to as “MPFRAP” in this work.

The original MPFRAP model calculates diffusion coefficients in systems only governed by
diffusion, i.e., fluorescent molecules freely diffusing in solution,1 termed the diffusion-only
model. To make this technique more applicable to in vivo systems, the original MPFRAP model
was adapted to extract diffusion coefficients in systems with flow, termed the diffusion-
convection model.10 In the study described here, we further expand the applicability of the cur-
rent MPFRAP models by incorporating shear stress in the presence of laminar flow, i.e., the flow
speed in the x direction is a linear function of position along the z, or optical, axis, termed the
shear flow model. This model accounts for the shear forces that play a critical role in modeling
capillary flow, drug delivery in complex microenvironments, microfluidics, and other biological
and physical systems.11,12 Studies have shown that shear forces induce signaling in many physio-
logical processes, such as inflammation, arterial thrombus formation, acute stroke, and
atherogenesis.13–16 The model in this study accounts for shear flow when it determines diffusion
coefficients, thus improving the efficacy and applicability of MPFRAP in testing biomaterials
and drug delivery, investigating microfluidics, and in vivo applications. Note that this study spe-
cifically focuses on measuring diffusion coefficients in the presence of shear flow, not on meas-
uring parameters of the flow field itself: there are ways of measuring flow speed and shear rate
other than via MPFRAP (for example via line scans of fluorescent beads on a multiphoton-laser
scanning microscope) that are often better than MPFRAP because they offer directional
information.

To model fluorescence recovery in the presence of various combinations of flow and shear
stress, we performed molecular dynamics simulations in a high-throughput manner by utilizing
parallel computing in MATLAB (The MathWorks, Natick, Massachusetts, United States). This
produced a simulated concentration-versus-time distribution from which we calculated a fluo-
rescence-versus-time distribution, which was then fit to various MPFRAP models. We then deter-
mined at what combinations of flow and shear stress our previous models failed to compute the
correct diffusion coefficient, and then evaluated the success of our new model at these combi-
nations. We then evaluated the fitting models using in vitro MPFRAP data collected in micro-
fluidic channels that induce various combinations of velocity and shear stress.

2 Materials and Methods

2.1 Theoretical Derivation of the Shear Flow MPFRAP Model
The initial concentration distribution of unbleached fluorophores immediately following a photo-
bleaching pulse is given by Brown et al.1

EQ-TARGET;temp:intralink-;e001;114;304cðx; y; z; t ¼ 0Þ ¼ co exp½−ð1∕bÞqbδbhIbblðx; y; zÞiΔt�; (1)

where co is the initial equilibrium concentration of the fluorophore; b is the number of photons
absorbed per photobleaching event; qb is the quantum efficiency for b-photon photobleaching; δb
is the multiphoton fluorescence action cross-section of the fluorophore for the order of excitation
required for photobleaching; hIbblðx; y; zÞi is the time average of the bleach intensity to the b’th
power; and Δt is the bleaching pulse duration. This distribution assumes that Δt is significantly
faster than any transport time in the system. In this work that means that Δt is significantly faster
than the recovery times due to diffusion, due to average flow speed, and due to shear rate.

The bleach intensity can be represented as a 3D Gaussian that is a function of the time
average of the intensity at the two-photon focal volume center raised to the b’th power, and
the 1∕e2 radial and axial dimensions of the two-photon focal volume, ωr and ωz, respectively:

1

EQ-TARGET;temp:intralink-;e002;114;158hIbblðx; y; zÞi ¼ hIbblð0;0; 0Þi exp
�
−
2bðx2 þ y2Þ

ω2
r

−
2bz2

ω2
z

�
: (2)

Assuming a properly overfilled back aperture, the radial and axial dimensions of a two-pho-
ton focal volume are defined as ωr ≡ 2.6λ∕ð2πNAÞ and ωz ≡ 8.8nλ∕½2πðNAÞ2�, respectively,
where λ is the wavelength of the excitation laser, n is the index of refraction of the immersion
media, and NA is the numerical aperture of the lens.17
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The fluorescence intensity at time t generated by a stationary weak monitoring beam that
produces fluorescence through an m-photon process is given as1

EQ-TARGET;temp:intralink-;e003;117;712FðtÞ ¼ δmE
m

Z
hImmoðx; y; zÞicðx; y; z; tÞdx dy dz; (3)

where δm is the multiphoton fluorescence action cross-section of the fluorophore for the order of
excitation required to produce fluorescence, E is the collection efficiency of the detection system,
and m is the number of photons absorbed per excitation event. Immo is a Gaussian intensity
distribution as in Eq. (2). Therefore, to derive FðtÞ for any mode of fluorescence recovery
(i.e., diffusion only, diffusion, flow, etc.) one must determine cðx; y; z; tÞ, then input that into
Eq. (3) to find FðtÞ.

The original MPFRAP model assumes that fluorescence recovery is due to diffusion only.
The concentration profile, cðx; y; z; tÞ, is determined using the diffusion equation and the result-
ant expression for fluorescence recovery is then

EQ-TARGET;temp:intralink-;e004;117;571FðtÞ ¼ Fo

X∞
n¼0

ð−βÞn
n!

1�
1þ nþ 2nt

τD

� 1�
1þ nþ 2nt

RτD

�
1∕2 ; (4)

where τD is the characteristic recovery time due to diffusion and R is the square of the ratio of
axial to radial 1∕e2 dimensions of the focal volume. In this original model, the two fitting param-
eters are β and τD. The bleach depth parameter β is defined as β ≡ ð1∕bÞqbδbhIbblð0;0; 0ÞΔti. The
diffusion coefficient can be calculated from the characteristic recovery time with the relationship
D ¼ ω2

r∕8τD. To expand the range of systems where one can measure accurate diffusion coef-
ficients, Sullivan et al. incorporated convective flow with diffusion into a fluorescence recovery
model.10 In the case of one-dimensional flow parallel to the imaging plane, the fluorescence
recovery can be modeled using the following equation:

EQ-TARGET;temp:intralink-;e005;117;429FðtÞ ¼ Fo

X∞
n¼0

ð−βÞn
n!

exp

�
−

4nð t
τvÞ2

1þnþ2nt
τD

�
�
1þ nþ 2nt

τD

��
1þ nþ 2nt

RτD

�
1∕2 : (5)

This model introduces a third fitting parameter, which describes the characteristic recovery
time due to flow, τv. The flow speed in this model can be calculated by the relationship
v ¼ ωr∕τv.

The previous model assumes that flow is uniform, but many biological and experimental sys-
tems are dominated by shear flow whereby the flow speed in one direction (i.e., the x direction)
varies with position in another direction (i.e., the z direction). To make MPFRAP applicable to
more in vivo systems, we will therefore incorporate shear flow in the convection element by adding
a time-and position-dependent coordinate shift to model shear along the axis perpendicular to flow,
before the mathematical convolution of the concentration profile with the excitation laser profile.

To begin the derivation, consider the time-dependent concentration profile of unbleached
fluorophores evolving only due to diffusion, as derived in Ref. 1 but expressed here in
Cartesian coordinates

EQ-TARGET;temp:intralink-;e006;117;226cðx; y; z; tÞ ¼
X∞
n¼0

AnðtÞe−μnðtÞx2e−μnðtÞy2e−υnðtÞz2 ; (6)

where

EQ-TARGET;temp:intralink-;e007;117;182AnðtÞ ¼ co
ð−βÞn
n!

1�
1þ 8bnDt

ω2
r

��
1þ 8bnDt

ω2
z

�
1∕2 ; (7)

EQ-TARGET;temp:intralink-;e008;117;125μnðtÞ ¼
2bn
ω2
r

1�
1þ 8bnDt

ω2
r

� ; (8)

EQ-TARGET;temp:intralink-;e009;117;89υnðtÞ ¼
2bn
ω2
z

1�
1þ 8bnDt

ω2
z

� : (9)
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To incorporate flow in the presence of shear stress, we apply a time-dependent coordinate
shift to this distribution representing flow along the x-axis which varies with z. In the frame of
reference of the observer, we define x 0 ¼ xþ vxt, y 0 ¼ y, and z 0 ¼ z. Here vx ¼ vo þ γz 0 where
γ is the shear rate and vo is the flow speed in the x-direction at the center of the focal volume.
The time-dependent fluorophore concentration now becomes

EQ-TARGET;temp:intralink-;e010;114;676cðx 0; y 0; z 0; tÞ ¼
X∞
n¼0

AnðtÞe−μnðtÞðx 0−vxtÞ2e−μnðtÞy 02
e−υnðtÞz 02 : (10)

By substituting Eq. (10) into Eq. (3), we now have
EQ-TARGET;temp:intralink-;e011;114;623

FðtÞ ¼ δmE
m

hIoi
X∞
n¼0

AnðtÞ
Z þ∞

−∞
e
−μnðtÞðx 0−vxtÞ2−

�
2m
ω2r

�
x 02
dx 0

×
Z þ∞

−∞
e
−
�
μnðtÞþ2m

ω2r

�
y 02
dy 0

Z þ∞

−∞
e
−
�
υnðtÞþ2m

ω2z

�
z 02
dz 0: (11)

Since vx is a function of z 0, we must separate and rearrange the terms in the x 0 and z 0 inte-
grals. Wewill define JðtÞ as the product of the three integrals in Eq. (11), and we begin by solving
the y 0 integral using the integral identity ∫ þ∞

−∞e−ρ
2x2dx ¼ ffiffiffi

π
p

∕ρðρ > 0Þ. Now, JðtÞ becomes

EQ-TARGET;temp:intralink-;e012;114;507JðtÞ ¼
�

π

μnðtÞ þ 2m∕ω2
r

�1
2

Z þ∞

−∞
e
−μnðtÞðx 0−vxtÞ2−

�
2m
ω2r

�
x 02
dx 0

Z þ∞

−∞
e
−
�
υnðtÞþ2m

ω2z

�
z 02
dz 0: (12)

To begin integrating the x 0 integral we first define vðz 0Þ ¼ v0 þ γz 0, then define u 0ðx 0z 0Þ
with Eq. (13) and observe that du 0∕dx 0 ¼ 1; this will allow us to make a variable substitution to
convert dx 0 to du 0 as shown in Eq. (14)

EQ-TARGET;temp:intralink-;e013;114;428u 0ðx 0z 0Þ ¼ x 0 −
μnðtÞvðz 0Þt

μnðtÞ þ 2m∕ω2
r
: (13)

Plugging in the u 0ðx 0z 0Þ and rearranging the terms such that all solely z 0-dependent terms
are in the z 0 integral, JðtÞ now becomes

EQ-TARGET;temp:intralink-;e014;114;366

JðtÞ ¼
�

π

μnðtÞ þ 2m∕ω2
r

�1
2

Z þ∞

−∞
e
−
�
μnðtÞþ2m

ω2r

�
u 0ðx 0z 0Þ2

du 0

×
Z þ∞

−∞
e
−

�
2mμnðtÞvðz 0Þ2 t2
μnðtÞω2rþ2m

þ
�
υnðtÞþ2m

ω2z

�
z 02

�
dz 0: (14)

Now the u 0 integral is in the same form as the previous y 0 integral, so we can apply the same
integral identity to now obtain a simplified version of JðtÞ with only the z 0 integral remaining

EQ-TARGET;temp:intralink-;e015;114;261JðtÞ ¼ π

μnðtÞ þ 2m∕ω2
r

Z þ∞

−∞
e
−

�
2mμnðtÞðvoþγz 0Þ2 t2

μnðtÞω2rþ2m
þ
�
υnðtÞþ2m

ω2z

�
z 02

�
dz 0: (15)

Through rearranging and collecting terms and performing integration with the integral

identity ∫ þ∞
−∞e−ðax2þbxþcÞdx ¼ ffiffi

π
a

p
eðb2−4acÞ4a, we obtain a final form of JðtÞ,

EQ-TARGET;temp:intralink-;e016;114;185

JðtÞ ¼
�

π

μnðtÞ þ 2m
ω2
r

��
π

υnðtÞ þ 2m
ω2
z
þ foμnðtÞγ2t2

�1
2

× exp

�
−foμnðtÞv2ot2

�
1 −

foγ2μnðtÞt2
υnðtÞ þ 2m

ω2
z
þ foμnðtÞγ2t2

��
; (16)

where
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EQ-TARGET;temp:intralink-;e017;117;736fo ¼
2m∕ω2

r

μnðtÞ þ 2m∕ω2
r
: (17)

We can plug this expression for JðtÞ back into Eq. (11) for the three integrals, and then define
Fo, the prebleach fluorescence, using the following equation:

EQ-TARGET;temp:intralink-;e018;117;679Fo ¼ co
δmE
m

hIoi
π

2m∕ω2
r

�
π

2m∕ω2
z

�1
2

: (18)

We now introduce our recovery time variables using the definitions: τD ¼ ω2
r∕8D,

τv ¼ ωr∕vo, and τγ ¼ 1∕γ. Recalling the fact that MPFRAP is usually performed with two-
photon processes, we plug in m ¼ b ¼ 2 to further simplify, and we also recall that R ¼ ω2

z∕ω2
r .

We now have the final fluorescence recovery equation that accounts for shear stress in the
presence of laminar flow

EQ-TARGET;temp:intralink-;sec2.1;117;578FðtÞ ¼ Fo

X∞
n¼0

AnðtÞBnðtÞSnðtÞ;

where
EQ-TARGET;temp:intralink-;e019;117;533

AnðtÞ ¼
ð−βÞn
n!

1�
1þ 2nt

τD

� 1�
1þ 2nt

RτD

�
1∕2

BnðtÞ ¼
1

n
1þ2nt∕τD

þ 1

1�
1þ n

1þ 2nt
RτD

þ nRð t
τγÞ2

1þnþ2nt
τD

�
1∕2

SnðtÞ ¼ exp

2
64 −4nð t

τv
Þ2

1þ nþ 2nt
τD

�
1 −

nRð t
τγÞ2

1þnþ2nt∕τD

1þ n
1þ2nt∕RτD

þ nRð t
τγÞ2

1þnþ2nt∕τD

�375 (19)

For simplicity, the exponential term in JðtÞ from Eq. (16) was named SnðtÞ. Note that in the
case where there is no shear stress (τγ → ∞) this model reduces to the diffusion-convection
model given by Eq. (5). In the case where there is no flow ðτv → ∞Þ and no shear stress
(τγ → ∞), this model reduces to the diffusion only model, given by Eq. (4).

Figure 1 shows the predicted fluorescence recovery curves using the new shear flow model
derived above, with typical values of β ¼ 0.6 and D ¼ 60 μm2∕s. In Fig. 1(a), we observe

Fig. 1 Mathematical modeling of MPFRAP with shear flow. Theoretical MPFRAP curves calcu-
lated at various stress rates using the shear flow model Eq. (21) where D ¼ 60 μm2∕s, and vo ¼ 0
(a) and vo ¼ 300 μm∕s (b).
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fluorescence recovery curves in the absence of flow at the center of the focal volume (vo ¼ 0)
(reminiscent of a “whirlpool” exactly centered on the focal volume), at four different shear rates.
Figure 1(b) shows a more realistic scenario with non-zero flow speed at the center of the focal
volume. As expected, the presence of shear tends to accelerate recovery of fluorescence.

2.2 Monte Carlo Simulation
To generate artificial data upon which to test our new model, we simulated the motion of
bleached molecules under different diffusion/flow/shear conditions. As in previous MPFRAP
simulations,10,17 space was discretized into a regular lattice structure with spacing defined by the
expected diffusive properties and diffusion was modeled as a random walk on this 3D lattice.18,19

The lattice spacing was determined by the 3D diffusion equation hr2i ¼ 6Dt, where the diffusion
coefficient,D, was chosen a priori and t represents the time step. For this study,D was chosen to
be 60 μm2∕s, which is a typical diffusion coefficient for fluorescein isothiocyanate (FITC)-
bovine serum albumin (BSA) at room temperature. The bleach depth parameter was set to 0.6.

Previously,10,17 the time step was set equal to 1/1000 of the typical diffusive recovery time
for a system with a diffusion coefficient D and with radial and axial focal volume dimensions ωr

and ωz, thus tstep ¼ τD∕1000.10,17 However, for certain combinations of high flow and large shear
rate, the half recovery time of the curve may be smaller than τD, meaning that the time step would
be too large to accurately simulate a fluorescence recovery curve. Instead, we account for all
possible recovery mechanisms by calculating the time step as 1/1000 of the expected half recov-
ery time of the curve, calculated using Eq. (20) below. Defining the time step as 1/1000 of the half
recovery time due to all possible recovery mechanisms instead of 1/1000 of the half recovery
time due to just diffusion10,17 will ensure a small enough time step to accurately simulate a fluo-
rescence recovery curve at all combinations of flow and shear rate

EQ-TARGET;temp:intralink-;e020;114;446

1

τ1
2

¼ 1

τD
þ 1

τv
þ 1

τy
: (20)

To start the simulation, this lattice was populated with one candidate molecule at every lat-
tice point, creating a uniform distribution of bleached fluorophores, spanning from −2ωr to 2ωr

in the x- and y-directions, and −2ωz to 2ωz in the z-direction. In our simulations, the NAwas 0.8
and hence ωr ¼ 0.404 μm and ωz ¼ 2.27 μm. Next, a “probability threshold” for each candidate
molecule was calculated using Eq. (21) below, which is obtained by substituting Eq. (2) into
Eq. (1), setting b ¼ 2 for a two-photon bleaching process, and co ¼ 1, and represents a distri-
bution of the appropriate shape for a given bleach depth parameter β. Each candidate molecule
was assigned a random number between zero and one, using a uniformly distributed random
number generator. The candidate was eliminated if the random number was above the threshold.
This process was repeated until there were 20,000 bleached molecules on the lattice. There were
no constraints on how many molecules could be at a single node.

EQ-TARGET;temp:intralink-;e021;114;275pblðx; y; z; t ¼ 0Þ ¼ 1 − exp

	
−β exp

�
−
4ðx2 þ y2Þ

ω2
r

−
4z2

ω2
z

�

: (21)

Once the initial distribution was created, all molecules were allowed to take one step in a
random direction. A single molecule can move in one of six directions; either the positive or
negative x-direction, positive or negative y-direction, or positive or negative z-direction.
Thus, each molecule was assigned a random integer from 1 to 6, using a uniformly distributed
random number generator, where each integer is assigned to one of the six possible directions.
The length of each of these steps is defined as L ¼ ffiffiffiffiffiffiffiffi

6Dt
p

. To simulate shear flow, each
molecule experienced a horizontal displacement in the x-direction after each step, defined as
xbias ¼ ðvx þ γzÞt, where vx is the flow speed at z ¼ 0; γ is the shear rate; z is the z-coordinate
of the particle after its random step of length L; and t is the time between each step. Once all
molecules have taken their random step and have been horizontally displaced, the fluorescence
signal from the distribution of molecules at that time step is calculated.

In a physical MPFRAP experiment, the fluorescence of unbleached molecules is monitored;
however, simulating an infinitely large volume of molecules is less feasible and more computa-
tionally expensive in simulation. For this reason, we are simulating a finite number of bleached
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fluorophores. Since we are monitoring the bleached fluorophores, we need to calculate the “miss-
ing fluorescence” that these fluorophores would have produced had they not been bleached. We
can then use the missing fluorescence to determine the fluorescence of the remaining unbleached
molecules, which will be used to generate the MPFRAP curve.

Calculating the missing fluorescence of the unbleached molecules can be done by re-
expressing the integral in Eq. (3) as a sum of monitor intensity, given by Eq. (2) with
b → m, over all bleached fluorophore locations ðxi; yi; ziÞ, yielding

EQ-TARGET;temp:intralink-;e022;117;652FblðtÞ ¼
δmE
m

X
i

exp

�
−
2bðx2i þ y2i Þ

ω2
r

−
2bz2i
ω2
z

�
: (22)

Now that we have the missing fluorescence of the bleached fluorophores, we obtain the
fluorescence of the unbleached fluorophores, FðtÞ, by recognizing that at any given time after
the bleaching event, the fluorescence of the unbleached molecules will be equal to the difference
between the prebleach fluorescence (Fo) and the missing fluorescence of the bleached molecules,
thus FðtÞ ¼ Fo − FblðtÞ. Therefore, to produce FðtÞ from FblðtÞ, we first need to deduce Fo

from only the information carried in the FblðtÞ curve. We can deduce Fo specifically from
Fblð0Þ by first taking the t ¼ 0 limit of Eq. (19),

EQ-TARGET;temp:intralink-;e023;117;527Fð0Þ ¼ F0

X∞
n¼0

ð−βÞn
n!

1

ð1þ nÞ3∕2 : (23)

And substituting this into the t ¼ 0 expression Fð0Þ ¼ Fo − Fblð0Þ, then solving for Fo:

EQ-TARGET;temp:intralink-;e024;117;474Fo ¼
Fblð0Þ

1 −
P∞

n¼0
ð−βÞn
n!

1
ð1þnÞ3∕2

: (24)

Once the fluorescence recovery curve FðtÞ is simulated, additional noise is introduced to the
curve to represent experimental in vitro and in vivo MPFRAP curves more closely.1,10,17

Specifically, the poissrnd() function in MATLAB was used to generate a Poisson distributed
random number with mean of one, and a distribution width of ∼0.03. This random number was
multiplied by each FðtÞ data point, producing final simulated FRAP curves with a relative noise
fraction of 3%, which closely mimics the relative noise found in in vitro experiments (see Fig. 2).

The simulated fluorescence recovery curves are then fit to the three fitting models
(diffusion-only, diffusion-convection, and shear flow) to extract the diffusion coefficient.

Fig. 2 Example Monte Carlo simulated recovery curve. Fluorescence recovery curve generated
with MPFRAP molecular dynamics algorithm in the presence of shear flow. Data are shown with
the addition of 3% relative noise, and overlayed is the calculated curve from the mathematical
model in Eq. (19).
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A typical simulated fluorescence recovery curve is shown in Fig. 2, with the addition of 3% noise
and the corresponding theoretical curve using the shear flow model.

2.3 Fitting Algorithm and Data Analysis
Simulated data were fit to the three fitting models using the Levenberg-Marquardt least squares
fitting method implemented in MATLAB (The MathWorks, Natick, Massachusetts, United
States) using the lsqcurvefit function. This function requires an initial guess for each fitting
parameter as an input. These seed values were calculated as follows.

First, a seed value for the bleach depth parameter β was determined by evaluating the shear-
flow MPFRAP equation [Eq. (19)] at t ¼ 0 and comparing it with the first data point of the
fluorescence recovery curve after photobleaching, Fð0Þ. The seed value of β is the value of
β that satisfies Eq. (25) for a given recovery curve, where N ¼ 10 for computational efficiency.

EQ-TARGET;temp:intralink-;e025;114;592Fð0Þ ¼ F0

XN
n¼0

ð−βseedÞn
ðnþ 1Þ! ffiffiffiffiffiffiffiffiffiffiffi

nþ 1
p : (25)

Next, we generate seed values for τD, τv, and τγ . For each term we do this by assuming that
the recovery is dominated entirely by that process. Starting with the seed value for τD, we assume
all recovery is due to diffusion. In an automated fashion, we obtain the data point that is closest to
or at the half-recovery fluorescence value and define that corresponding time as τH. The seed
value for τD is defined as the half-recovery time of the MP-FRAP curve, τH .

The seed value for τv is generated by assuming that recovery is only due to flow. In this case,
we take the limits τD → ∞ and τγ → ∞ in Eq. (19), which leaves us with an expression for
the flow-dominated fluorescence recovery:

EQ-TARGET;temp:intralink-;e026;114;452

FðtÞ
Fo

¼
X∞
n¼0

ð−βÞn
n!

exp

�
−4nð t

τvÞ2
1þn

�

ð1þ nÞ3∕2 : (26)

We then make the substitution x 0 ¼ ðt∕τvÞ2 and plot Fðx 0Þ∕Fo as a function of x 0. The seed
value for τv is then obtained by finding the half-recovery time of this curve, which is denoted
x 0
1∕2. This value was determined to be x 0

1∕2 ¼ 0.3625. Plugging back in for x 0, we can solve for

an expression for the seed value of τv as follows:

EQ-TARGET;temp:intralink-;e027;114;347τvseed ¼
τHffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0.3625

p : (27)

Last, we determine a seed value for τγ by taking the limits τD → ∞ and τv → ∞ in Eq. (19),
which leaves us with an expression for shear flow dominated fluorescence recovery:

EQ-TARGET;temp:intralink-;e028;114;287

FðtÞ
Fo

¼
X∞
n¼0

ð−βÞn
n!

1

ð1þ nÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ nþ nRð t

τγÞ2
1þn

r : (28)

Making a similar substitution and using the same mathematical steps we used to calculate
τvseed , we see that the shear flow dominated x 0

1∕2 ¼ 0.145. Plugging back in for x 0, we can solve

for an expression for the seed value for τγ as follows:

EQ-TARGET;temp:intralink-;e029;114;195τγseed ¼
τHffiffiffiffiffiffiffiffiffiffiffi
0.145

p : (29)

These seed values are used as the initial guesses that are a required input of the lsqcurvefit
function in MATLAB. An optional input of the lsqcurvefit function is a lower and upper bound
for the fitting parameters which imposes bounds that these parameters cannot exceed. While one
can imagine many experimental situations where biological or physical insight can provide use-
ful bounds on these parameters, to remain unbiased and test the authenticity of our fitting models
in a “worst case scenario,” initially we did not impose any bounds on the fitting parameters.

Simulation and fitting algorithms were run on a BlueHive supercomputer equipped with
multiple CPU cores and nodes (Center for Integrated Research Computing, University of
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Rochester, Rochester, New York, United States). Utilizing high-throughput parallel computing
allowed us to generate artificial MPFRAP data and fit to each of the three models for many
different combinations of input diffusion coefficients, velocities, and shear rates. Simulations
were run at 27 different flow speeds and 64 different shear rates, with 20 repetitions at each
point, resulting in a total of 34,560 simulations. All software for simulating MPFRAP data and
fitting that data are publicly available on Code Ocean: https://doi.org/10.24433/CO.4821156.v1.

2.4 In vitro MPFRAP with Shear Flow
We also evaluated the three fitting models in an in vitro system with various combinations of
velocity and shear rate. This system used a microfluidic channel with a height of 200 μm, length
of 50 mm, and width of 5 mm (μ-slide I Luer, Ibidi). To initiate gravity-driven flow through the
channel, a large inlet reservoir was placed on an adjustable lab jack to control the height of the
reservoir relative to the channel. The outlet reservoir was kept at a constant height. The inlet
reservoir was filled with 300 mL of a 1 mg∕mL solution of FITC conjugated to 2000 kDa dex-
tran (Sigma). To this solution we added 1 μL∕mL red fluorescent microspheres (FluoSpheres,
Molecular Probes/Invitrogen). The velocity of the bead/dye solution through the channel was
manipulated by adjusting the height of the inlet reservoir and quantified by taking line scan
images of the fluorescent beads, which were then analyzed in ImageJ. Three line scan images
were taken prior to 3 MPFRAP measurements at a specific location within the channel, yielding
at least 15 lines at each location. The measured velocities were plotted as a function of height
within the channel and fit to a second-order polynomial, as seen in Fig. 3. The shear rate as a
function of height within the channel was then calculated as the derivative of the flow profile.
This produced a velocity and shear-rate at each location where a MPFRAP measurement was
made, which was then converted to a scaled velocity (vs) and scaled shear rate (γs) using the focal
volume dimensions of the lens.

A mode-locked Ti-Sapphire laser (Mai Tai; Spectra Physics, Mountain View, California,
United States) delivering laser light with 80-fs pulses at a repetition rate of 100 MHz. Rapid
modulation between bleach and monitor laser intensities was achieved with a KDP* Pockels

Fig. 3 Experimental set-up for MPFRAP with shear flow and velocity and shear profile within a
200 μmmicrochannel. (a) Schematic diagram of experimental set-up for MPFRAP with shear flow.
(b) Velocity measurements were computed from line scan images of fluorescent beads. Data are
shown as mean ± standard deviation (n ≥ 15). Velocity data were fit to a second-order polynomial
and shear rate data were obtained by taking the absolute value of the derivative of the velocity
profile.
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Cell (model No. 350-80; Conoptics, Danbury, Connecticut, United States). Timing of the bleach
and monitor pulses was delivered by a pulse generator (model No. DG535, Stanford Research
Systems, Sunnyvale, California, United States). Simultaneously, the voltage output to the
Pockels Cell was set and switched by a custom control box. After the Pockels Cell, the laser
was directed through an Olympus Fluoview 300 laser-scanning microscope to the back aperture
of a 0.8 NA, 40× water immersion objective lens (Olympus, Center Valley, Pennsylvania, United
States). The back aperture of the objective was overfilled, yielding a focal volume with 1∕e2
radius of 0.403 μm in the radial direction and 2.27 μm in the axial direction.10 The objective
lens focused the focal volume at various positions within the microfluidic channel. The fluores-
cence emission was separated from the excitation light by a short-pass dichroic mirror (Chroma
Technologies, Brattleboro, Vermont, United States). When imaging fluorescent beads to
determine flow properties within the microfluidic channel, the emission signal was filtered by
a 605/35 emission filter (Chroma Technologies, Brattleboro, Vermont, United States). When
collecting FRAP data, the emission signal was filtered using a 534/30 emission filter
(Chroma Technologies, Brattleboro, Vermont, United States) before being detected by a photo-
multiplier tube (PMT) (Hamamatsu, Bridgewater, New Jersey, United States). The PMT output
was directed to a photon counter (model No. SR400; Stanford Research Systems, Sunnyvale,
California, United States).

3 Results

3.1 Evaluating How the Diffusion-Convection Model Fails in the Presence of
Shear

To evaluate the performance of the previous diffusion-convection model in the presence of shear,
we performed a series of simulations modeling fluorescence recovery with various diffusion
coefficients ranging from 0.5 μm2∕s to 500 μm2∕s, with a flow velocity in the center of the
focal volume of zero (vo ¼ 0) and with a range of shear rates from 0.01 to 10000 s−1.
These curves were fit to the diffusion-convection model and their diffusion coefficients were
extracted. To determine accuracy of the fit, the fitted diffusion coefficient was divided by the
input diffusion coefficient, thus an accurate fit will yield a ratio of 1. Figure 4(a) shows the
accuracy of the diffusion-convection model for various diffusion coefficients as a function of
shear rate. As expected, increasing shear will produce erroneously high values of measured
D, to an extent that varies with the actual value of diffusion coefficient relative to shear rate.
To remove the effect of diffusion coefficient, we scaled the x-axis by defining the scaled shear
rate as the ratio of τD to τγ , thus γs ¼ γðω2

r∕8DÞ. This dimensionless independent variable quan-
tifies the relative contribution of shear and diffusion to the transport of molecules into and out of
the focal volume to reveal a universal impact of shear rate on the accuracy of fit, which can be
seen in Fig. 4(b). We see that the diffusion-convection model produces erroneous fits when
γs ∼ 0.5 and greater. Thus, when the recovery rate due to shear is more than half the recovery
rate due to diffusion, the diffusion-convection model is no longer valid.

3.2 Evaluating the Impact of Scaled Shear Rate on Previous Models
Using the concept of scaled shear rate, we moved on to observing how all three models behave as
scaled shear rate is varied, at three different scaled velocities. The input diffusion coefficient for
these simulations was set to 60 μm2∕s, which is a typical diffusion coefficient for FITC-BSA.
Figure 4 shows the accuracy of fit for the diffusion-only model (red), diffusion-convection model
(blue), and the new shear flow model (green) over a wide range of scaled shear values, for various
scaled velocities, vs ¼ 0; 0.5, and 1. Similar to the scaled shear rate, the scaled velocity is a
dimensionless independent variable that quantifies the relative contribution of flow and diffusion
to the transport of molecules into and out of the focal volume10 (i.e., vs ¼ τD∕τv ¼ ωrvo∕8DÞ.

In Fig. 5(a), the scaled velocity is zero, representing an unphysical but mathematically attrac-
tive situation where the focal volume is placed exactly where the net transverse flow at z ¼ 0 is
zero, reminiscent of a “whirlpool.”We see that all three models produce accurate diffusion coef-
ficients up to a scaled shear rate of ∼0.3. At scaled shear rates greater than ∼0.3 and ∼0.5,
respectively, we see the diffusion-only and diffusion-convection model produce erroneous values
of D, while the shear flow model continues producing accurate D values up until γs ∼ 30.
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In Fig. 5(b), the scaled velocity is set to 0.5 and we see the diffusion-only model produces
erroneous values of D at all values of scaled shear rate, while the diffusion-convection model
produces accurate diffusion coefficients up until γs ∼ 0.5, and the shear flow model produces
accurate D values up until γs ∼ 30. In Fig. 5(c), the scaled velocity is set to 1, thus indicating
an equal contribution of flow and diffusion to the fluorescence recovery in the center of the focal
volume. Once again, we see the diffusion-only model producing erroneous D at all values of
scaled shear rate, while the diffusion-convection model produces accurate diffusion coefficients
up until γs ∼ 0.5, and the shear flow model continues to produce accurate diffusion coefficients
up until γs ∼ 30.

Fig. 4 Accuracy of diffusion-convection model for various diffusion coefficients as a function of
shear rate and scaled shear rate. (a) MPFRAP curves were simulated with Monte Carlo simulation
for various input diffusion coefficients with a central velocity of zero (vo ¼ 0) for various ranges of
shear rate. Curves were fit to the diffusion-convection model and the fit diffusion coefficient was
extracted. Data are shown as mean ± standard deviation (n ¼ 20). (b) Scaling the x -axis of
(a) by the relative contribution of shear and diffusion to the fluorescence recovery, γs ¼ γðω2

r ∕8DÞ,
allows curves of all values of diffusion coefficient to overlay into a single curve.
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3.3 Accuracy of Fitting Models Over Large Ranges of vs and γs
Next, we performed Monte-Carlo simulations for a wide range of scaled velocities and scaled
shear rates to visualize the area of the vs-γs parameter space over which the three models pro-
duced accurate diffusion coefficients. We preformed simulations at 27 × 64 ¼ 1728 different
combinations of scaled velocity and scaled shear rate, respectively. We then fit the resultant fluo-
rescence recovery curves to the three models and plotted the accuracy of the fitted diffusion
coefficient as contour plots in Fig. 6. In these plots, using the Dfit∕Din ratio as a measure of
accuracy does not visually highlight erroneous values of Dfit that are smaller than Din as well
as it highlightsDfit values that are too large. To facilitate visualization of the resultant accuracy of
fit, here our measure of accuracy is presented as the square of the natural log of the fit diffusion
coefficient divided by the input diffusion coefficient, ½lnðDfit∕DinÞ�2. Thus, an accurate fit dif-
fusion coefficient (Dfit ¼ Din) will yield a value of 0, if the fit diffusion coefficient is too small
and the resulting Dfit∕Din is 0.1, our metric will produce a value of 5.3, and if the fit diffusion
coefficient is too large and the resulting Dfit∕Din is 10, our metric will produce a value of 5.3.
Thus, our metric displays erroneously small values of Dfit in a similar way as erroneously large
values of Dfit.

Figure 6(a) shows the accuracy of Dfit over the vs-γs parameter space when fit to the dif-
fusion-only model. We can see that the diffusion-only model produces accurate diffusion coef-
ficients for values of vs and γs less than ∼0.3 (dark blue region). Figure 6(c) show the accuracy of
Dfit over the vs-γs parameter space when fit to the diffusion-convection model. As expected,

Fig. 5 Effect of scaled shear rate on accuracy of the three fitting models. Investigating the effects
of scaled shear rate on the accuracy of fitted diffusion coefficient for the diffusion-only model (red,
circles), diffusion-convection model (blue, triangles), and the shear flow model (green, squares)
at vs ¼ 0 (a), 0.5 (b), and 1.0 (c). Data are shown as the mean ± standard deviation (n ¼ 20).
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we see the range of scaled velocities that produce an accurate diffusion coefficient significantly
increases over that of the diffusion-only model. However, for any value of vs, the model produces
erroneous diffusion coefficients when γs exceeds ∼0.5. Figure 6(e) shows the accuracy of Dfit

over the vs-γs parameter space when fit to the shear flow model. We see that the shear flow model
produces accurate Dfit values over an area much larger than the diffusion-only and diffusion-
convection models and begins to produce erroneous values when γs exceeds ∼30.

Fig. 6 Results of three fitting models over various scaled velocities and scaled shear rates.
Fluorescence recovery curves were generated in a high-throughput manner at 1728 different com-
binations of scaled velocities and scaled shear rates ranging from 10−3 to 102. Curves were then fit
to the diffusion-only model (a, b), diffusion-convection model (c, d), and shear flow model (e, f), and
the fitted diffusion coefficient was extracted. Data are shown as the mean of (n ¼ 20). Accuracy of
the resultant diffusion coefficients is shown in panels (a, c, e) by the color bar, which represents
½lnðDfit

D in
Þ�2, where an accurate fit diffusion coefficient will yield a value of 0, shown as dark blue.

The average standard deviation is shown in panels (b, d, f) ðn ¼ 20Þ, where smaller values are
shown as dark blue.
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3.4 Improving D fit with a priori Knowledge
As mentioned previously, no bounds were imposed on any fitting parameters in the above figures
to remain unbiased and test the true authenticity and rigor of the shear flow model. Thus, Fig. 6(c)
shows the accuracy of the shear flow model to determine the diffusion coefficient of a system in
the worst case scenario where no a priori knowledge is provided. However, there is usually some
level of a priori knowledge about one’s system that can be used to improve the fitting process.
Table 1 shows how the fitted diffusion coefficient changes in the absence and presence of a priori
knowledge about one’s system for two points taken from the red region of Fig. 6(e), where all
three models failed to produce an accurate diffusion coefficient. First, we consider the case where
we know within a factor of ten what the possible values are for all four fitting parameters. In this
case, we impose a lower bound that is one tenth of the true values of each parameter and upper
bound that is ten times the true values of each parameter. This results in a fitted diffusion coef-
ficient that is much closer to the true diffusion coefficient (D ¼ 60 μm2∕s). In the best case
scenario, we suppose that the velocity and shear rate of a system is known or measured inde-
pendently by the user (using fluorescent beads with line scans, etc.). In this case, τv and τγ can be
fixed and τD and β can be free fitting parameters with no bounds. We see that in this case we get a
diffusion coefficient that is much more accurate than the diffusion coefficient obtained with no
bounds on the fitting parameters.

3.5 In vitro MPFRAP with Shear Flow
Next, we performed MPFRAP in an in vitro system which allowed for various combinations of
vs and γs with a solution of 2000 kDa FITC-dextran with a known diffusion coefficient. The
velocity of the solution through the channel was manipulated by adjusting the height of the inlet
reservoir. To determine the shear rate at various locations within the channel, the velocity mea-
sured with line scan images was plotted as a function of height within the channel and fit to a
second-order polynomial (Fig. 3); the shear rate as a function of height within the channel was
computed as the derivative of the velocity profile, as shown in Fig. 3.

Multiple MPFRAP measurements were taken immediately after line scan acquisition at a
specific height within the channel. The measured diffusion coefficient (Dm) was then compared
to the known diffusion coefficient to determine the accuracy of the three MPFRAP models in
vitro. First, we performed MPFRAP in a droplet of FITC-dextran to check that our system could
accurately determine the diffusion coefficient in a diffusion-only system, this yielded a diffusion
coefficient of 9.8 μm2∕s which is comparable to values reported in the literature;20 this measured
diffusion coefficient (Dtruth) was used as our ground truth value that all other measurements were
compared to. All MPFRAP curves were fit to the three MPFRAPmodels with the same criteria as
the simulated MPFRAP curves with no a priori bounds imposed, (representing the “worst case”
scenario), as shown in Fig. 7.

Table 1 Fitted diffusion coefficient in the presence of different a priori knowledge about the sys-
tem. Two regions of poor Dfit values were chosen from Fig. 6(c): one in with high vs and one with
high γs. The first column shows Dfit when all four parameters are fit with no bounds [as in Fig. 5(c)],
the second column shows Dfit when a lower bound (lb) and upper bound (ub) are imposed on all
four parameters, and the third column shows Dfit when τv and τγ are known and τD and β are free
fitting parameters with no bounds. The true diffusion coefficient is 60 μm2∕s. Data are shown as
mean ± SEM (n ¼ 20).

No bounds

l.b. = 0.1 × truth

Known τv and τγ with no
bounds on τD and βu.b. = 10 × truth

vs ¼ 0.2031 139.35� 428.57 μm2∕s 59.72� 32.08 μm2∕s 57.99� 22.46 μm2∕s

γs ¼ 40.1028

vs ¼ 0.0016 133.09� 330.81 μm2∕s 63.10� 12.42 μm2∕s 63.46� 11.43 μm2∕s

γs ¼ 19.31
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4 Discussion
Here we derived an improved model of MPFRAP that can more accurately measure diffusion
coefficients in systems where shear flow is present. Previous MPFRAP models were designed to
only calculate diffusion coefficients in systems with no flow (diffusion-only), and flow with
no shear stress (diffusion-convection). We began by observing how the previous diffusion-
convection model begins to fail, which is shown in Fig. 4: simulations were performed for multi-
ple input diffusion coefficients in the absence of central flow (vo ¼ 0) over a large range of shear
rates γ. For each simulated diffusion coefficient Din, we see erroneous Dfit are exponentially
produced at some shear rate which is different for different values of Din. To observe a universal
relationship between erroneous Dfit and shear rate, we scaled the x-axis of Fig. 4(a) by the
relative contribution of shear and diffusion to the overall fluorescence recovery, thus the scaled
shear rate in Fig. 4(b) is γs ¼ γðω2

r∕8DÞ. This dimensionless independent variable allowed all
the curves in Fig. 4(a) to overlap into a single curve, where we can now see that the diffusion-
convection model begins to produce erroneous fits at γs ∼ 0.5. A scaled shear rate of 0.5 indicates
that the recovery rate due to shear is about half the recovery rate due to diffusion. Thus, at low
values of scaled shear, we expect accurate Dfit values because the recovery of the curve is domi-
nated by diffusion. At high values of scaled shear, we expect erroneous values of Dfit because
the recovery of the curve is dominated by shear and the diffusion-convection model has no
mechanism to account for shear.

With the concept of scaled shear rate now defined, we moved on to observing how all three
models behave in the presence of scaled shear rate at three different values of scaled velocities,
shown in Fig. 5. The scaled velocity is the relative contribution of flow and diffusion to the
overall fluorescence recovery within the focal volume, i.e., vs ¼ voðωr∕8DÞ, and has been
described previously.10 In Fig. 5(a), we observe the accuracy and precision of the three models
in the case vs ¼ 0 over a range of scaled shear rates. We see that the diffusion-only model begins
to produce erroneous Dfit values at γs ∼ 0.3. Interestingly, we see increasingly erroneous Dfit

values that have consistently small error bars, which illustrates the difference between precision
and accuracy. Since the diffusion-only model has no mechanism to account for recovery due to
shear, it assigns all recovery to diffusion. This effect produces very inaccurate fits but will
produce consistently similar (and poor) fits. We also observe the same phenomenon with the
diffusion-convection model in Fig. 5(a), with some improvement in the range of accuracy of
Dfit compared to the diffusion-only model. The new shear stress model significantly improves
the range of accuracy ofDfit and starts to produce erroneous fits at γs ∼ 30. Since this new model
explicitly considers shear flow, its mode of failure is different from the previous two models. The
model can correctly assign shear-based recovery to the shear parameter γ, maintaining accuracy
in the fittedD at higher shear rates, up to γs ∼ 30. However, it loses accuracy and precision in the

Fig. 7 Accuracy of the three MPFRAP models in determining D in vitro in the presence of various
combinations of flow and shear rate. Scaled velocity and shear rates were measured as described

in the methods section. Accuracy of Dm is determined by calculating
h
ln
�

Dm
Dtruth

�i
2
, which will yield

values closer to zero when Dm is closer to Dtruth. Data are shown as mean (n ¼ 3) ± standard
deviation. Note that bars for convective flow and shear flow in the first three columns are not
visible because their mean values and error bars are so close to zero, while the bars for diffusion
only and convective flow for the later columns are cut off, to keep the detailed behavior of the
shear flow model visible.
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fitted diffusion coefficient as γs exceeds ∼30. The recovery becomes dominated by high shear
and the actual physical contribution of diffusion to the recovery process becomes insignificant,
which explains the loss of accuracy. Additionally, there are three variables that recovery can be
assigned to and this can be accomplished with several combinations of these variables, which
explains the loss in precision. Nonetheless, the shear flow model significantly improves the range
of accuracy of Dfit over various shear rates compared to the diffusion-only and diffusion-
convection models.

The limits of accuracy ofDfit for all three models can be seen in Fig. 6, where the accuracy of
Dfit is plotted as a function of 1728 different combinations of scaled velocity and scaled shear
rate. Figure 6(a) shows the accuracy of Dfit produced by the diffusion-only model over this vs-γs
parameter space, and we can see an accurate diffusion coefficient (dark blue) is produced for a
relatively small area of this parameter space, bounded by vs ∼ 0.3 and γs ∼ 0.3. Thus, when the
recovery rate due to flow and shear is <0.3 times the recovery time due to diffusion, the diffusion-
only model is accurate. Figure 6(b) shows the standard deviation ofDfit, which remains low even
in much of the regions of poor Dfit, suggesting that the diffusion-only model is still precise in
regions where it is no longer accurate, as discussed above.

The diffusion-convection model expands the area of parameter space over which accurate
diffusion coefficients are produced in the direction of increasing vs, as seen in Fig. 6(c). The
limits of accurate diffusion coefficients for the diffusion-convection model are vs ∼ 100 and
γs ∼ 0.5, which is a considerable improvement in one direction of parameter space (vs) compared
to the diffusion-only model. Fig. 6(d) shows the standard deviation of Dfit, which reveals two
features of the diffusion-convection model; it remains accurate but less precise at high values of
vs, and becomes inaccurate and remains precise as γs increases.

Finally, the shear flow model shown in Fig. 6(e) significantly expands the area over which
accurate diffusion coefficients are produced in the direction of increasing γs, with accurate values
of D possible up to scaled shear rates of γs ∼ 30. Figure 6(f) shows the standard deviation of Dfit

produced by the shear-flow model. Unlike the previous two models, the bounds of precision for
the shear-flow model are almost the same as the bounds of accuracy. Additionally, we see the
model remains accurate at higher values of vs, but is slightly less precise than the diffusion-
convection model. This is most likely due to the fitting algorithm having the flexibility of
assigning the fluorescence recovery to either τv or τγ in the shear model. Of course, these exact
errors in Dfit are a function of the particular choices of β (0.6), relative noise (3%), and focal
volume dimensions (NA = 0.8) chosen for our simulations and while we expect the same quali-
tative relationships between vs, γs, and fitting model accuracies for other choices, the quantitative
relationships may change.

In the absence of any a priori knowledge, the shear flow model covers a much larger area in
vs-γs parameter space than previous models and begins to produce erroneous diffusion coeffi-
cients on the outer border of this parameter space. However, in the presence of a priori knowl-
edge, we see a noticeable improvement in the fitted diffusion coefficient in Table 1. Imposing
even weak bounds on all four fitting parameters increases the efficacy and accuracy of the fitting
algorithm, thus improving the fitted diffusion coefficient. In the best case scenario, independently
knowing the velocity and shear rate of one’s system will improve the fitted diffusion coefficient
even more since the number of fitting parameters decreases from four to two.

Finally, we explored the accuracy of all three fitting models on in vitro FRAP data collected
in a microfluidic channel with various combinations of velocity and shear rate. The velocities and
shear rates at which we collected our measurements are within the bounds of the axes in Fig. 6.
As seen in Fig. 7, the trends are the same as in the simulations: the diffusion only model produces
relatively accurate diffusion coefficients at very low values of velocity and shear rate and pro-
duces increasingly erroneous diffusion coefficients as velocity and shear rate increase. We also
see the diffusion-convection model retains accuracy at higher shear values than the diffusion only
model, but also begins to fail in the presence of increasing shear rate. Finally we see the same for
the shear-flow model at the first three combinations, and we see the metric of error remain much
smaller than the other models as the velocity and shear rate increase. Again, the exact values of vs
and γs at which each model begins to lose accuracy will vary with several experimental param-
eters including β, relative noise, etc. It is important to note that no bounds were imposed on
the fitting of these curves. According to our discussion accompanying Table 1, we expect
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the accuracy of the shear flow model to improve even more when the appropriate bounds are
imposed.

There are numerous biological applications where the new shear flow fitting model can
provide useful information on diffusion coefficients by expanding the region of vs-γs parameter
space that is accessible for accurate diffusion coefficients, relative to previous fitting models.
In the past, our previous diffusion-convection model has been used to reevaluate the hypothesis
that aquaporin-4 water channels facilitate convective transport of solutes within brain paren-
chyma by performing MPFRAP on various solutes moving through mouse brain.21 This model
has also been used to measure lymph viscosity (via measurement of D) in lymphatic vessels
afferent to popliteal lymph nodes in the hind footpad of mice.6 Looking forward, there are many
combinations of flow speed and shear rate values that occur in biological systems, such as micro-
vessels and artificial organ constructs, which occur within the region of vs-γs parameter space
now accessible with the new model.13–16

This improved model of MPFRAP can also be helpful in the field of microfluidics, which
includes devices as diverse as organ-on-a-chip tumor models and point-of-care analytic devices
in low resource settings.22,23 A variant of MPFRAP has been used to validate the simulated inter-
stitial flow and diffusion within a microfluidic device that controls cellular communication
mediated by interstitial flow.24 Shear is a salient feature of the flow profiles in narrow micro-
fluidic channels and has been exploited in numerous such devices to stimulate biological
responses in cells.25,26 Due to their small size, the aqueous flow in microfluidic devices is
typically laminar, and diffusion is a prominent process by which solutes can be separated.27,28

For example, a T-sensor is a diagnostic microfluidic device for chemical assays which
utilizes the diffusion of solutes to extract information about the solute molecular weight and
concentration.27–30 Hence, we see that a fitting model for MPFRAP that produces accurate
diffusion coefficients in the presence of shear flow may contribute in the area of microfluidics
as well as in flow in biological systems.

Disclosures
The authors have no relevant interests to declare.

Code, Data, and Material Availability
The code used to generate and fit simulated data can be found on Code Ocean: https://doi.org/10
.24433/CO.4821156.v1. Data generated in this study are available from the authors upon
request.

Acknowledgments
The authors would like to thank Dr. Javier Lapeira-Manzella for early contributions to this project.
This work was funded by the National Science Foundation (Grant No. 2150799) and a Schmitt
Program in Integrative Neuroscience (SPIN) grant, all to EBB3, as well as National Institutes of
Health (Grant No. P50HD103536).

References
1. E. B. Brown et al., “Measurement of molecular diffusion in solution by multiphoton fluorescence

photobleaching recovery,” Biophys. J. 77(5), 2837–2849 (1999).
2. O. Arendt et al., “Restricted diffusion of calretinin in cerebellar granule cell dendrites implies

Ca2þ-dependent interactions via its EF-hand 5 domain,” J. Physiol. 591(16), 3887–3899 (2013).
3. H. Schmidt et al., “Parvalbumin is freely mobile in axons, somata and nuclei of cerebellar Purkinje neurones,”

J. Neurochem. 100(3), 727–735 (2007).
4. H. Schmidt et al., “Diffusional mobility of parvalbumin in spiny dendrites of cerebellar Purkinje neurons

quantified by fluorescence recovery after photobleaching,” Biophys. J. 84(4), 2599–2608 (2003).
5. V. P. Chauhan et al., “Multiscale measurements distinguish cellular and interstitial hindrances to diffusion in

vivo,” Biophys. J. 97(1), 330–336 (2009).
6. E. M. Bouta et al., “Measuring intranodal pressure and lymph viscosity to elucidate mechanisms of arthritic

flare and therapeutic outcomes,” Ann. N. Y. Acad. Sci. 1240, 47–52 (2011).
7. T. Stylianopoulos et al., “Diffusion anisotropy in collagen gels and tumors: the effect of fiber network

orientation,” Biophys. J. 99(10), 3119–3128 (2010).

Elias et al.: Expanding the applicability of multiphoton fluorescence recovery after. . .

Journal of Biomedical Optics 076502-17 July 2023 • Vol. 28(7)

https://doi.org/10.24433/CO.4821156.v1
https://doi.org/10.24433/CO.4821156.v1
https://doi.org/10.24433/CO.4821156.v1
https://doi.org/10.24433/CO.4821156.v1
https://doi.org/10.24433/CO.4821156.v1
https://doi.org/10.1016/S0006-3495(99)77115-8
https://doi.org/10.1113/jphysiol.2013.256628
https://doi.org/10.1111/j.1471-4159.2006.04231.x
https://doi.org/10.1016/S0006-3495(03)75065-6
https://doi.org/10.1016/j.bpj.2009.03.064
https://doi.org/10.1111/j.1749-6632.2011.06237.x
https://doi.org/10.1016/j.bpj.2010.08.065


8. D. Mazza et al., “A new FRAP/FRAPa method for three-dimensional diffusion measurements based on
multiphoton excitation microscopy,” Biophys. J. 95(7), 3457–3469 (2008).

9. C. Shi et al., “Measurement of three-dimensional anisotropic diffusion by multiphoton fluorescence recovery
after photobleaching,” Ann. Biomed. Eng. 42(3), 555–565 (2014).

10. K. D. Sullivan et al., “Improved model of fluorescence recovery expands the application of multiphoton
fluorescence recovery after photobleaching in vivo,” Biophys. J. 96(12), 5082–5094 (2009).

11. C. T. Kesler et al., “Lymphatic vessels in health and disease,” Wiley Interdiscip. Rev. Syst. Biol. Med. 5(1),
111–124 (2013).

12. L. Wang et al., “Endothelial insulin-like growth factor-1 modulates proliferation and phenotype of smooth
muscle cells induced by low shear stress,” Ann. Biomed. Eng. 42(4), 776–786 (2014).

13. K. S. Cunningham and A. I. Gotlieb, “The role of shear stress in the pathogenesis of atherosclerosis,”
Lab. Invest. 85(1), 9–23 (2005).

14. G. F. von Tempelhoff et al., “Impact of rheological variables in cancer,” Semin. Thromb. Hemost. 29(5),
499–513 (2003).

15. S. Jadhav and K. Konstantopoulos, “Fluid shear- and time-dependent modulation of molecular interactions
between PMNs and colon carcinomas,” Am. J. Physiol. Cell Physiol. 283(4), C1133–C1143 (2002).

16. K. S. Sakariassen, L. Orning, and V. T. Turitto, “The impact of blood shear rate on arterial thrombus
formation,” Future Sci. OA 1(4), Fso30 (2015).

17. K. D. Sullivan and E. B. Brown, “Multiphoton fluorescence recovery after photobleaching in bounded
systems,” Phys. Rev. E Stat. Nonlin Soft Matter Phys. 83(5 Pt 1), 051916 (2011).

18. M. J. Saxton, “Anomalous subdiffusion in fluorescence photobleaching recovery: a Monte Carlo study,”
Biophys. J. 81(4), 2226–2240 (2001).

19. F. P. Coelho, W. L. Vaz, and E. Melo, “Phase topology and percolation in two-component lipid bilayers:
a monte Carlo approach,” Biophys. J. 72(4), 1501–1511 (1997).

20. A. Pluen et al., “Role of tumor-host interactions in interstitial diffusion of macromolecules: cranial vs.
subcutaneous tumors,” Proc. Natl. Acad. Sci. U. S. A. 98(8), 4628–4633 (2001).

21. A. J. Smith et al., “Test of the ‘glymphatic’ hypothesis demonstrates diffusive and aquaporin-4-independent
solute transport in rodent brain parenchyma,” Elife 6, e27679 (2017).

22. P. Yager et al., “Microfluidic diagnostic technologies for global public health,” Nature 442(7101), 412–418
(2006).

23. R. Kalot, R. Mhanna, and R. Talhouk, “Organ-on-a-chip platforms as novel advancements for studying
heterogeneity, metastasis, and drug efficacy in breast cancer,” Pharmacol. Ther. 237, 108156 (2022).

24. L. F. Alonzo et al., “Microfluidic device to control interstitial flow-mediated homotypic and heterotypic
cellular communication,” Lab Chip 15(17), 3521–3529 (2015).

25. C. Yvanoff and R. G. Willaert, “Development of bone cell microarrays in microfluidic chips for studying
osteocyte-osteoblast communication under fluid flow mechanical loading,” Biofabrication 14(2), 025014
(2022).

26. E. Ersland et al., “Human vascular wall microfluidic model for preclinical evaluation of drug-induced
vascular injury,” Tissue Eng. Part C Methods 28(2), 83–92 (2022).

27. A. E. Kamholz and P. Yager, “Theoretical analysis of molecular diffusion in pressure-driven laminar flow in
microfluidic channels,” Biophys. J. 80(1), 155–160 (2001).

28. B. H. Weigl and P. Yager, “Microfluidic diffusion-based separation and detection,” Science 283(5400),
346–347 (1999).

29. A. E. Kamholz, E. A. Schilling, and P. Yager, “Optical measurement of transverse molecular diffusion in
a microchannel,” Biophys. J. 80(4), 1967–1972 (2001).

30. M. S. Munson et al., “Diffusion based analysis in a sheath flow microchannel: the sheath flow T-sensor,”
Lab. Chip 5(8), 856–862 (2005).

Tresa M. Elias is a PhD candidate in the Department of Biomedical Engineering at the
University of Rochester. She received her BS degree in biomedical engineering concentrating
in medical optics in 2020 from the University of Rochester. Her research interests include dif-
fusive transport in various in vivo systems using MPFRAP and utilizing Monte Carlo simulations
to develop more realistic and applicable models of MPFRAP.

Edward B. Brown Jr. was a professor of physics at Manhattan College.

Edward B. Brown III is an associate professor of biomedical engineering at the University of
Rochester.

Elias et al.: Expanding the applicability of multiphoton fluorescence recovery after. . .

Journal of Biomedical Optics 076502-18 July 2023 • Vol. 28(7)

https://doi.org/10.1529/biophysj.108.133637
https://doi.org/10.1007/s10439-013-0939-7
https://doi.org/10.1016/j.bpj.2009.04.020
https://doi.org/10.1002/wsbm.1201
https://doi.org/10.1007/s10439-013-0957-5
https://doi.org/10.1038/labinvest.3700215
https://doi.org/10.1055/s-2003-44641
https://doi.org/10.1152/ajpcell.00104.2002
https://doi.org/10.4155/fso.15.28
https://doi.org/10.1103/PhysRevE.83.051916
https://doi.org/10.1016/S0006-3495(01)75870-5
https://doi.org/10.1016/S0006-3495(97)78798-8
https://doi.org/10.1073/pnas.081626898
https://doi.org/10.7554/eLife.27679
https://doi.org/10.1038/nature05064
https://doi.org/10.1016/j.pharmthera.2022.108156
https://doi.org/10.1039/C5LC00507H
https://doi.org/10.1088/1758-5090/ac516e
https://doi.org/10.1089/ten.tec.2021.0227
https://doi.org/10.1016/S0006-3495(01)76003-1
https://doi.org/10.1126/science.283.5400.346
https://doi.org/10.1016/S0006-3495(01)76166-8
https://doi.org/10.1039/b501035g

