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Abstract

Significance: The development of a technique allowing for non-invasive measurement of retinal
blood flow (RBF) in humans is needed to understand many retinal vascular diseases (pathophysi-
ology) and evaluate treatment with potential improvement of blood flow.

Aim: We developed and validated an absolute laser Doppler velocimeter (LDV) based on an
adaptive optical fundus camera that provides simultaneously high-definition images of the
fundus vessels and absolute maximal red blood cells (RBCs) velocity to calculate the absolute
RBF.

Approach: This new absolute LDV is combined with the adaptive optics (AO) fundus camera
(rtx1, Imagine Eyes©, Orsay, France) outside its optical wavefront correction path. A 4-s record-
ing includes 40 images, each synchronized with two Doppler shift power spectra. Image analysis
provides a vessel diameter close to the probing beam, and the velocity of the RBCs in the vessels
are extracted from the Doppler spectral analysis. A combination of these values gives an average
of the absolute RBF.

Results: An in vitro experiment consisting of latex microspheres flowing in water through a
glass capillary to simulate a blood vessel and in vivo measurements on six healthy humans was
done to assess the device. In the in vitro experiment, the calculated flow varied between 1.75 and
25.9 μL∕min and was highly correlated (r2 ¼ 0.995) with the flow imposed by a syringe pump.
In the in vivo experiment, the error between the flow in the parent vessel and the sum of the flow
in the daughter vessels was between −11% and 36% (mean� sd, 5.7� 18.5%). RBF in the main
temporal retinal veins of healthy subjects varied between 0.9 and 13.2 μL∕min.

Conclusions: The AO LDV prototype allows for the real-time measurement of absolute RBF
derived from the retinal vessel diameter and the maximum RBCs velocity in that vessel.
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1 Introduction

The inner retina is supplied by the retinal circulation, which is characterized by lower flow than
the choroid, high-oxygen extraction, absence of any anastomosis, and autonomic innervation.
The retinal blood flow (RBF) adaptation to the perfusion pressure is modulated by a fine
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autoregulation based on a balance between myogenic (via endothelium) and metabolic (via neu-
rons and glia) mechanisms.1 Abnormal variations of RBF have been reported in a variety of
ocular diseases including age-related macular degeneration2–4 and glaucoma,5 but also in sys-
temic diseases such as diabetes6,7 and systemic hypertension.8–10 Comprehensive knowledge of
RBF, essential for understanding the pathophysiology of ocular and systemic diseases, is also the
key to the evaluation of therapeutic strategies.11

RBF depends on the vascular cross section and the velocity of red blood cells (RBC). Several
techniques have been developed to estimate or to measure RBF in the human eye such as fluo-
rescein angiography,12 laser Doppler velocimeter (LDV),13–17 Doppler optical coherence tomog-
raphy,18–20 optical coherence angiography21,22 (OCT-A), and laser Doppler holography23 (LDH).
Although OCT-A is able to show where blood is circulating, it does not estimate velocity of RBC
and thus gives no information about the flow rate.24 LDH has the potential to evaluate the veloc-
ity within the vessel but mainly depends on the frame rate, which must be in the order of
100 kHz. Although the canon laser blood flowmeter17 systems allow for quantification of blood
flow using one acquisition, the LDV systems developed so far allow for the independent acquis-
ition of blood velocity and retinal vascular diameters.14–16,25,26 Simultaneous measurements of
retinal vascular diameters and velocity are highly advisable due to physiological variability of
these parameters.

The measurement of blood vessel diameter is based on fundus images combined with image
analysis using densitometry.27,28 The recent and innovative technology using adaptive optics
(AO) aims at correcting low-order and high-order ocular aberrations, enhances performance
of the optical systems, and allows for high-resolution imaging of retinal vessels. For instance,
the rtx1 instrument provides in vivo retinal images with high lateral resolution (1.6 μm per pixel)
and a quantitative analysis of microvascular structures, especially the measurement of retinal
arteriolar wall thickness.29

To overcome the limitations of the present technologies, we developed an approach based on
simultaneous measurements of retinal vessel diameters using AO technology that provides 16-bit
images29 and is able to measure the inner retinal vessel and blood velocity using bidirectional
LDV. In this paper, we report in vitro and in vivo experiments investigating the validity of blood
flow rate measured by this new prototype (aoLDV).

2 Materials and Methods

2.1 Description of the Instrument

2.1.1 Camera with adaptive optics

Images were obtained using the commercially available AO retinal camera,30,31 which measures
and corrects wavefront aberrations with a 750-nm super luminescent diode source and an AO
system operating in a closed loop. A 4° × 4° fundus area (i.e., ∼1.2 × 1.2 mm2 in emmetropic
eyes) is illuminated at 840 nm by a light emitting diode with low temporal coherence, and a stack
of 40 fundus images is acquired in 4 s (10 images per second) by a charge-coupled device
camera. The rtx1 provides a continuous fundus image that is used to align the probing beam.
Its intensity is 100 μW at the cornea, well below the maximum permissible exposure of 700 μW
at that wavelength (ANSI Z136.1-2000).

2.1.2 Principle of bidirectional laser Doppler velocimetry

The principle of absolute LDV for the human eyewas first published by Riva et al.14 One probing

beam with direction ~ki is focused on a blood vessel, in which laminar flow is assumed [Fig. 1(a)].
Light is backscattered and Doppler frequency shifted due to the movement of RBCs within the
vessel. Two scattered beams, A and B, are selected with a dedicated pupil so that the angle α
between both beams is defined by the optical system and the length of the eye. The vector of the
principal ray of each beam and the velocity of the blood in the vessel are all in the same plane.
Assuming a quadratic velocity profile32 of the RBCs moving in the vessel, the power spectrum of
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the electronic signal has a theoretical step shape with a sharp edge at the maximum frequency
shift (see spectra of Fig. 2). The maximum frequency shift corresponds to the maximum velocity
of the blood vmax in the center of the vessel. In this case, it can be shown that

EQ-TARGET;temp:intralink-;e001;116;270vmax ¼ λ ·
jfA − fBj

n · α · cos β
; (1)

where fA and fB are the maximum frequency shifts of beams A and B, respectively, λ is the
wavelength of the laser source, and n is the refractive index of the plasma surrounding the RBCs.
The angle α, between the two scattered beams, is calculated using the formula α ¼ arctanðx∕LÞ,
where x represents the distance between the beam position (A and B, Fig. 1) at the eye pupil and
L is the axial eye length assumed to be 23.95 mm33 and is set identical for all subjects. By
observing the line of the probing beam on the fundus image acquired by the rtx1 camera, the
angle β [Fig. 1(a)] is adjusted to zero by rotating a Dove prism (DP) [Fig. 1(b)] so that it has no
influence on the calculation of vmax. In practice, an angle β up to 10 deg (inducing an error of
1.5%) is acceptable to obtain a reliable measurement of vmax.

2.1.3 Optical layout of the velocimeter

The LDV optical system is introduced inside the illumination path with the beam splitter (BS)
[Fig. 1(b)] and is located outside the adaptive optical path of the rtx1. A 830-nm laser source S

(a) (b)

Fig. 1 (a) Principle of absolute LDV: ~k i represents the probing beam direction and ~kA and ~kB are
the scattered directions that are selected within the pupil. The three vectors ~k i , ~kA, and ~kB are on
the same plane that makes an angle β with ~v . (b) Optical system: except the BS (830 nm
RazorEdge Dichroic laser-flat BS, Semrock, USA), which is part of the rtx1, all optical elements
are mounted on a separate system that is attached to the rtx1 and aligned with respect to it. Px are
the pupil planes, Ix are image planes, Mx are mirrors, Lx are lenses, and Dx are detectors. The
DOE (on a slider not seen in the image) is placed at Ps.

Fig. 2 Single-measurement example. Graphs: graphical explanation of the procedure used to find
the maximum frequency shift of both signals. The function r c ½iðf Þ� (solid black line) is derived from
the power spectrum (gray line). Dashed lines are fitted lines of r c ½iðf Þ� at the beginning and at the
end of the frequency domain. The crossing of both fitted lines defines the maximum frequency
shift. Image: corresponding fundus image with the calculated value of the flow and the diameter.
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focused at infinity enters the optical system close to the edge of the pupil of the instrument,
passes through the LDV and rtx1 optical systems to enter the pupil of the subject, and focuses
on a vessel. The probing beam diameter on the retina is about 50 μm. Part of this light is back-
scattered by the vessel and the RBCs and goes back through the pupil of the eye to the same
optical system up to the image of the pupil plane Ps where two holes select the two specific

directions ~kA and ~kB. A small reflecting prism MAB deflects each beam to lenses LA and LB,
which focus each beam on a pinhole at the image plane IA and IB corresponding to about 100 μm
at the retinal plane. Detectors DA and DB (APD C5460, Hamamatsu) are placed just behind the
pinholes. A diffractive element (DOE) placed at Ps converts the spot in the fundus into a line.
Then the (DP) is rotated to visually align this line with the vessel on the screen of the rtx1
(minimizing β). Lenses L1 and L2 form a telescope that relays the rtx1 pupil Pc to the pupils
Ps of the LDV optical system with a unity magnification.

2.1.4 Signal acquisition and electronics

The electrical signals from the two detectors are connected to an acquisition card (USB-6356,
National Instruments) and are sampled at 120 kHz and Fourier analyzed. The direct current
corresponding to the light intensity of a collected scattered light beam was removed by an
analog filtering before the acquisition. During each of the 40 acquisitions of 100 ms, 45 ms
are used to acquire one high-resolution image (rtx1), 30 ms for one pair of Doppler spectra
(LDV) and the rest for the closed-loop AO. The trigger button of the rtx1 simultaneously starts
recording the images on the rtx1 and the Doppler acquisition, which is controlled by a dedicated
LabVIEW software based on a version developed for a laser Doppler flowmeter.34

2.1.5 Signal analysis

The power spectrum is given by fskg, where 1 ≤ k ≤ N. Considering the ideal case of a rec-
tangular distribution of the power spectrum, the normalized function rc of partial summation:

EQ-TARGET;temp:intralink-;e002;116;395rcðiÞ ¼
P

k¼i
k¼1 sk

max ðrcÞ2
(2)

will linearly increase up to the maximum power spectrum and then remain constant (Fig. 2
dashed lines). First, the horizontal line is found with a linear fit of the last 1∕3 of the fskg,
for which only noise is expected. Then a second linear fit is done from k ¼ 1 to kx, correspond-
ing to a 10% change between the first linear fit and the rc function. The intersection of both fitted
lines is assumed to be the maximum frequency shift of the spectrum.

2.1.6 Image analysis

The measurement of the vessel diameter close to the probing spot was implemented in
MATLAB. Images are 16-bit gray scale with a resolution of 1392 × 1040 pixels, corresponding
to roughly 1.6 μm per pixel at the fundus. First, a threshold is applied at 80% of the maximal
image intensity, and the probing beam spot is detected as the largest connected component. Then
a 360 × 360 pixels square region of interest is set around the spot centroid, and a second-order
polynomial is fitted to the intensity data to model the low-frequency variations due, among
others, to the non-uniform illumination. The subsequent processing is applied on the difference
between the original intensity values and the fitted model. The vessel orientation and the offset of
its centerline with respect to the spot centroid are found by correlation with 24 precomputed
synthetic vessel templates (15 deg increment). Finally, with this rough vessel orientation, image
profiles are extracted across the vessel centerline with an interprofile distance of two pixels. The
distance in pixels between the vessel edges is determined for each profile. As last step, the vessel
diameter is estimated as the mean value of the non-aberrant edge distances determined on each
profile (see Fig. 3). The conversion from n pixels to physical distance d is based on the pub-
lication of Bennet35 and was provided by Imagine Eyes©:
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EQ-TARGET;temp:intralink-;e003;116;397d ¼ n
19.269ðL − 1.82Þ

373.87
μm; (3)

where L is the axial length in millimeters of the eye under examination.

2.1.7 Calculation of mean flow rate

Assuming a Poiseuille flow in a cylindrical cross section, the mean flow rate was calculated
using the following equation:

EQ-TARGET;temp:intralink-;e004;116;290F ¼ π

�
d
2

�
2

·
1

2
vmax; (4)

where d is the diameter of the vessel obtained from the image analysis and vmax is the maximum
velocity of the RBCs in the vessel, which is derived from Eq. (1). The blood flow rate F deviates
by about 4% per 1 mm change in eye length.

2.1.8 Measurement procedure

The subject was seated in front of the rtx1 and looked inside the rtx1 objective. A high-resolution
image of the retina was displayed by the rtx1 to observe the selected vessel and the LDV probing
beam. To observe retinal vessels close to the optic nerve head or outside the posterior pole, the
range of movement of the internal rtx1 fixation point was not large enough, and therefore, the left
eye was fixating on an external point, positioned 1.5 m behind the rtx1.

Once the probing beam was moved on a first- or second-order retinal vessel in the temporal
part of the fundus, the DOE was pushed into the optical path, converting the point into a line,
which was then aligned with the retinal vessel by rotating the DP. Finally, the DOE was
pulled out.

Fig. 3 Results of the image processing steps: the detected probing beam spot is the region bor-
dered by the blue points. The spot centroid is in the center of a 360 × 360 pixels region of interest.
The detected vessel orientation and position is represented by the straight line in magenta and the
edges by the green and red points superimposed on the image. The distance between each pair of
points is drawn in the graph on the right. Points drawn in red correspond to aberrant edge dis-
tances (values outside mean� 3 sd). The mean distance between the green points is used to
estimate the vessel diameter; 73.3 pixels in that case.
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The signals from the detectors were also connected to a loud speaker, so cardiac pulsed sound
could be heard if the beam was focused on a retinal artery. The longitudinal beam position on the
retinal vessel was optimized by varying the imaging focus plane until the spectra showed a clear
cutoff (see Sec. 4) and the acoustic signal corresponded to a Doppler sound. The lateral position
of the beam was adjusted with the external fixation point within about 20 μm.

2.1.9 In Vitro measurements on latex microspheres flowing in
a glass capillary

We connected a glass capillary (drummond microcaps, inner diameter 200 μm) via a plastic tube
to a syringe pump (Agilia SP, Fresenius Kabi, USA). Latex microspheres (1 μm in diameter,
Polysciences Europe GmbH, Eppelheim, Germany) suspended in water (180 μL of microsphere
in 35 mL of water) were pushed through the capillary with the syringe. Further, a focusing lens
(F ¼ 25.4 mm, LB1761-B, Thorlabs) was mounted to focus the collimated probing beam on the
capillary. This capillary-lens assembly was placed in front of the rtx1 objective. The vessel-
simulating capillary was displayed on the rtx1 screen.

Linearity was asssed by comparing the Doppler measurement of the maximum velocity of
microspheres with the precise flow set by the syringe pump.

2.1.10 In Vivo measurements on venous junctions

The study was conducted in accordance with the declaration of Helsinki for research involving
human subjects and adhered to Good Clinical Practice guidelines. Written informed consent was
obtained from the subjects after explaning the study. The study protocol was approved by the
local Institutional Review Board (IRB #6705). For this exploratory study, no optimal sample was
calculated, but six healthy subjects with a very good fixation ability, between the age of 27 and
58, participated in this study. A complete ocular examination, including slit lamp biomicroscopy,
indirect funduscopy, fundus photography, and axial length measurement partial coherence inter-
ferometry (Zeiss IOL Master, Carl Zeiss Meditec Inc, Dublin, CA, USA), was conducted before
the beginning of the study. Velocity measurements were conducted after dilatation of the right
eye using a 1% topical tropicamide (Théa, Clermont-Ferrand, France). The rtx1 allows for an
easy superposition of the pupil of the eye with that of the instrument.

To test the accuracy of the LDV instrument, blood flow in a retinal venous junction of each
human volunteers was measured before the junction and in the two daughter vessels. The meas-
urement before the junction was compared with the sum of the measurements of the daughter
vessels to assert their equality. An exemple of a vein and its daughter veins is illustrated in Fig. 4.

3 Results

3.1 In Vitro Measurements on Latex Microspheres Flowing in
a Glass Capillary

The Doppler measurements performed on the glass capillary were found to be between
0.92 and 13.3 mm∕s for the velocity and between 1.75 and 25.9 μL∕min for the flow rate.

Fig. 4 Fundus image and corresponding AO raw image obtained with the rtx1 of a bifurcation
measured with aoLDV. PV is the principal vein that furcates into daugther veins DV1 and DV2.
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The measurements were highly correlated (slope equals 1.09, r2 ¼ 0.995, p < 0.0001, see
Fig. 5) with the flow imposed by the syringe pump.

3.2 In Vivo Measurements on Venous Junctions

Measured diameters of the retinal veins varied between 89 and 129 μm (mean 104 μm)
(Table 1). The velocity ranged from 2.3 to 21.1 mm∕s (mean 11.0 mm∕s). The blood flow values
in the daughter and parent vessels ranged from 0.9 to 13.2 μL∕min (mean 5.7 μL∕min). The
standard deviation of ΔF∕FPV was 18.5%.

4 Discussion

The development of this new prototype combining LDV and high-resolution AO imaging
showed that (1) the LDV could be added using a complementary optical pathway; (2) optoelec-
tronic development allowed for synchronization between both devices and therefore allowed for
AO images and Doppler spectrum acquisitions every 0.1 s; (3) experimental measurements using
glass capillary and microspheres showed high correlations between measurements and imposed
values; and (4) preliminary measurements in human retinal vessels showed results with accept-
able errors.

Fig. 5 Comparison between the difference in frequency shifts (ΔCFs) obtained with the aoLDV on
microspheres flowing in the capillary tube and the flow given by the syringe-pump (correlation
coefficient r 2 ¼ 0.995). On the power spectra, the peak before the cutoff is due to the light intensity
being stronger in the center of the capillary than at the edges. Note that the total power spectrum
(area under the curve) remained constant with the increase in velocity.

Table 1 Measurements of RBF at retinal venous bifurcation in healthy subjects. ΔF is the
difference between the flow in the parent vessel (FPV) and the sum of the flow in the daughter
vessels (FDV1 and FDV2): ΔF ¼ FPV − ðFDV1 þ FDV2Þ. Analysis was done automatically. Flow
units are μL∕min.

Subject A B C D E F

FDV1 1.4 0.9 8.6 4 10.4 8.3

FDV2 3.4 1 6.8 3 1.7 3.5

FPV 4.6 2.1 11.3 5.9 12.8 13.2

ΔF∕FPV (%) 4.8 −8.3 36.1 19 −6.3 −10.7
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4.1 In Vitro Measurements on Latex Microspheres Flowing in
a Glass Capillary

To mimic a 130-μm human retinal vessel, a 200-μm glass capillary with a lens of 25.4 mm focal
length was used. Capillaries in air with larger diameters would be preferable because they disturb
the AO of the rtx1 less than smaller diameters. Our results show a clear linear relationship
between the flow calculated with the Doppler measurements and the flow rate given by the
syringe pump.

4.2 In Vivo Measurements on Venous Junctions

Our measurements of RBF were in the same range as those reported in previous studies of retinal
vessels with similar diameters. Using a device based on the same fundamental principle, a
bidirectional laser Doppler velocimeter, and monochromatic fundus photographs, Riva et al.16

measured retinal vessel diameters between 64 and 177 μm, corresponding to flow rate between
1 and 20 μL∕min, which is consistent with our measurements. Yoshida et al.36 used a canon
laser blood flowmeter (CLBF100) and measured the blood flow rate to be between 3.2 and
14.4 μL∕min (mean 8.3 μL∕min) in retinal veins with a diameter ranging from 98 to
166 μm (mean, 138 μm) (see Table 2). In their study, Werkmeister et al.18 measured retinal veins
between 84 and 172 μm and found RBF between 1.9 and 18.7 μL∕min with dual-beam
bidirectional Doppler Fourier-domain optical coherence tomography.

4.3 aoLDV Advantages and Feasibility

aoLDV offers the possibility to perform very precise measurements of the inner diameter of
vessels. Averaging 40 raw images, obtained from one measurement with the rtx1, each with
a lateral pixel-resolution of 1.6 μm,39 gives a better lateral pixel-resolution of 0.8 μm.40

In this study, raw images were used to calculate the diameter since each image corresponds to
a pair of Doppler spectra. In our study, 94 out of 480 raw images (19.6%) were excluded from
analysis, 31 (6.5%) because they could not be analyzed (mainly due to blinks) and 63 (13.1%)
because the probing beam was not on the vessel. At the present time, no method to quantitatively
assess perfusion is used in routine practice. This is due to the difficulties in performing RBF
in vivo.

The evaluation of a new method of RBF measurement is difficult in the absence of a gold
standard. An LDV system was implemented by canon (CLBF100),36 but only a few instruments

Table 2 Comparaison between our measurements and the results from different publications.

Publ. Techn. Subj. Nb Age (year) Eyes Nb Veins Nb Dia (μm) Vel (mm/s) Flow (μL∕min)

aoLDV 6 29 (25–31) 6 18 (89–129) 0.9–13.3 (121)

16 LDV 7 34 (20–45) 12 66 (64–177) (0.5–3.6) (120)

37 LDV 1 (21–43) — — 156� 20 1.71–0.33 12.5� 3.5

38 LDV 12 27� 5 — — (132–176) (1.2–2.1) (7.818.7)

15 LDV 64 31.8� 6.5 — — (90–185) (0.8–2.4) 12.2� 7a

17.9� 7.1b

36 LBF 6 (28–43) 12 18 (98–166) — (3–14)

18 FD-OCT 10 29 (19–35) 10 30 (84–172) — (2–19)

20 FD-OCT 4 (20–30) — 73 (60–160) — (1–16)

Mean (min – max) or mean ± standard deviation.
aTemporal sup.
bTemporal inf.
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were sold. Nevertheless, LDV has not reached routine clinical practice, in part because of aligne-
ment difficulties and because of the relative imprecision of diameter measurements.41 The spatial
resolution is limited by the quality of the eye under observation.

OCT scanning is becoming standard in clinical optical imaging.42 OCT has a lateral reso-
lution of around 12 to 20 μm and an axial resolution between 2.3 and 7 μm. The price of such
cameras is about five times higher than classical fundus cameras, but they offer many advantages
of which the most interesting is its ability to build axial slices of the fundus. By adapting the
detection, OCT allows for Doppler measurement. However, the speed of the scanning limits the
range of measurable velocities. Our proposed system encompasses this shortcoming since we do
not scan the retina.

4.4 aoLDV Limitations

We have encountered some limitations for the measurements of vmax on human subjects, includ-
ing the need for a good ocular fixation for 4 s to ensure that the probing and detection beams,
respectively, hit and come back from the center of the vessel (Fig. 6). Owing to slight eye move-
ments, we may underestimate vmax by measuring velocities of RBCs close to the vessel wall
(lower than vmax) or by adding Doppler shifts associated with the surrounding tissue.

The AO live video of the fundus allowed us to verify the exact location of the laser beam on
the vessel, but it did not provide the detection plane of the aoLDV, which could be different due
to the AO adaptation.

Bidirectional LDV measurement accuracy strongly depends on the plane of focus (conjugate
to the detection plane) of the probing beam as well as A and B beams (Fig. 6) and the position of
the probing beam, which should be exactly on the vessel center. This causes a parallax problem,
which occurs when the image plane of the LDV is not on the same image plane as the rtx1
(Fig. 6). Obtaining a usefull pair of good spectra was a strong technical limitation. The constraint
of the existing fundus camera rtx1 prevents us from using the path of the AO for the LDV, leaving
this path uncorrected for eye aberrations. To overcome this parallax problem, we manually
change the refraction correction of the rtx1 between −0.5 and 3 diopters to find the best cor-
rection to match the detection plane. These settings were time-consuming, 1 h for one meas-
urement of a bifurcation.

The power spectrum from a glass capillary with a flowing fluid is typically a step function, in
which the maximum of the frequency shift correponds to vmax (cutt-off frequency). The quality
of the in vitro spectrum obtained with the moving light scattering microspheres was excellent,
and the cutoff frequency was always well-defined. Another difficulty was calculating the precise
cutoff frequency of the in vivo spectrum, which, most of the time, did not have a clear step
shape. Thus vmax extraction was dependent on the algorithm to calculate the maximum of the
frequency shift.

Fig. 6 Illustration of the parallax phenomenon, which explains that one or both scattered collected
beams (~kA and ~kB) can be out of focus while the laser beam (~k i ) is focused on the vessel (circle on
the fovea). P0 is the image plane of the rtx1, and P0, P1, or P2 are possible image planes of
the LDV optical system.

Truffer et al.: Absolute retinal blood flowmeter using a laser Doppler velocimeter combined. . .

Journal of Biomedical Optics 115002-9 November 2020 • Vol. 25(11)



4.5 Clinical and Technical Perspectives

More studies with a larger series of subjects are needed to evaluate the reproducibility and to
estimate the total RBF after measuring the main retinal vessels near the optic nerve disc. To allow
for examination of both eyes with the rtx1, an external fixation target should be designed. A more
robust image analysis with deep learning would reject fewer images. The development of soft-
ware combining data from the Doppler spectra, the quality of AO images, and the exact location
of the probing beam on the retinal vessel is in progress and will allow for real-time evaluation of
measurements.

Assuming a correct focus, two illuminating beams −~kA and −~kB instead of collected scattered

beams must hit at the fovea the same point as the probing beam ~ki (Fig 6). This would solve the
parallax issue.

5 Conclusion

In conclusion, this aoLDV prototype allows for simultaneous measurement of the inner
retinal diameter and the velocity of the RBC within that vessel, which allows for real-time
calculation of absolute blood flow rate. The main limitations of this prototype were due to
optomechanical constraints, which prevents the use of the optical path of AO for the LDV.
This produced occasional discrepancies between the focal planes of the AO and LDV optical
paths (parallax effect), which suppressed Doppler signal in one or both channels. Improving the
analysis method and solving the parallax issue will offer a high potential for examining RBF
abnormalities in patients with ocular or systemic diseases. The results obtained in healthy sub-
jects are promising.
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