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Abstract

Significance: Melanoma is a deadly cancer that physicians struggle to diagnose early because
they lack the knowledge to differentiate benign from malignant lesions. Deep machine learning
approaches to image analysis offer promise but lack the transparency to be widely adopted as
stand-alone diagnostics.

Aim: We aimed to create a transparent machine learning technology (i.e., not deep learning) to
discriminate melanomas from nevi in dermoscopy images and an interface for sensory cue
integration.

Approach: Imaging biomarker cues (IBCs) fed ensemble machine learning classifier (Eclass)
training while raw images fed deep learning classifier training. We compared the areas under the
diagnostic receiver operator curves.

Results: Our interpretable machine learning algorithm outperformed the leading deep-learning
approach 75% of the time. The user interface displayed only the diagnostic imaging biomarkers
as IBCs.

Conclusions: From a translational perspective, Eclass is better than convolutional machine
learning diagnosis in that physicians can embrace it faster than black box outputs. Imaging bio-
markers cues may be used during sensory cue integration in clinical screening. Our method may
be applied to other image-based diagnostic analyses, including pathology and radiology.
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1 Introduction

Melanoma is the most dangerous skin cancer and the leading cause of death from skin disease.
There are over 96,000 new cases in the USA annually with nearly 10,000 deaths attributed to
melanoma. Worldwide, annual melanoma mortality is over 60,000 people. Gaps exist in our
ability to diagnose melanomas versus nevi. Gaps also exist in providing specialty care for
patients with suspicious lesions and for increasing the numbers of patients seeking potentially
life-saving melanoma diagnosis from primary care providers. Despite the fact that many patients
with skin lesions first present to their primary care physicians, these physicians often lack the
knowledge to differentiate benign from malignant lesions. Despite evidence that early detection
increases survival, and despite the need for technology to enhance screening to an expert level on
a wide scale, there is uncertainty regarding the effectiveness of state-of-the-art technological
methodology in clinical dermatologist screening.1 Improved screening may prevent melanoma
deaths (7230 in the USA in 20192) while decreasing unnecessary invasive procedures because
screening guides the binary decision for or against surgical biopsy. Technology can translate
down the expertise hierarchy structure of clinical practitioners to enhance diagnosis in less-
specialized medical practices. Table 1 shows that for each American to be evaluated by an expert
dermoscopist, the experts would need to see millions of patients, which is not feasible, whereas if
technology could enable common providers, such as general practitioners to screen with expert
precision, the screening diagnostic net could be extended because providers would screen hun-
dreds (not millions) of patients. Recent advances in machine learning have shown promise for
high-performing computational diagnostic tools in multiple clinical areas,3,4 but the noninter-
pretability of data-intensive deep learning models remains a barrier to widespread deployment.
Because the skin is accessible to relatively inexpensive and noninvasive diagnostic imaging, and
because clinicians rely heavily on visual inspection, melanoma is an ideal case study.

Melanoma growth rate is variable and multifactorial. Screening is typically done with der-
moscopy using a dermatoscope, which is a low-magnification, illuminated, polarized5 contact
imaging device widely used in dermatology practice.6 A recent observational study7 regarding
the rate of growth in vertical and radial growth phase of superficially spreading melanomas found
that melanomas in the vertical growth phase invade by 0.13� 0.16 mm∕month. A delay in
detection of a few months can negatively impact prognosis since growth beneath the ∼0.3-mm-
deep basal layer basement membrane constitutes invasion toward metastasis. It would be a sig-
nificant medical advancement if diagnostic imaging technology could improve early detection
with machine learning and associated automated image processing devices to predict underlying

Table 1 The Americans/Provider ratio illustrates that there are not enough Top Dermatologists
with expert dermoscopy training to evaluate the entire US population. All dermatologists (20,000
in USA) automatically qualify as nonexpert dermoscopist screeners with board certification.
An unmet healthcare need is to address the screening accuracy gap between top dermatologists
and the broader medical network. Eclass potentially translates the top dermatologists’ pattern
recognition skills (and associated diagnostic precision) to general dermatology and the broader
community of nonexpert screeners.

Provider type US population per provider

Top dermoscopists 6,480,000

Dermatologists 32,400

In-pharmacy evaluation 4830

General practitioner 379
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pathology from noninvasive dermoscopy images. Yet careful consideration of biases in training
data suggests that there are ethical concerns, such as the fact that training data does not always
represent all skin types. Convolutional neural networks (CNN)8 may be inappropriate for stand-
alone diagnostic medical decision making because physicians cannot have confidence in a
computer-derived diagnostic risk score without understanding the underlying computational
diagnostic process.

There exists an unmet need to better understand diagnostic processes utilized by machine
learning-derived tools. As a more interpretable alternative9 to CNN, we considered a diagnostic
ensemble classifier (Eclass)10 of traditional (i.e., “nondeep”) machine learning approaches. It
used a set of imaging biomarkers that quantify medically relevant features rather than brute force
pixel analysis to freely choose salient features. Because it is “transparent” in that imaging bio-
markers are visual features, implementation of Eclass could result in more medical accountabil-
ity and confidence than CNN. Herein, our context was melanoma detection, but digital imaging
biomarkers based on visual sensory cues can be applied to any image-based diagnostic analysis
including pathology and radiology. Figure 1 shows a sample run for each machine learning
method and Fig. 2 shows a graphic user interface application (App) capable of displaying
imaging biomarker cues (IBCs) to illustrate clinical and pathological features, aiding in visual
interpretation of imaging diagnoses.

2 Methods

2.1 Imaging

Dermoscopy is a mainstream clinical imaging method for melanoma screening used in derma-
tology practice. This report analyzes two different cohorts of demoscopy images in different
countries using different dermatoscope imaging systems. The first cohort10 consisted of alcohol-
coupled, nonpolarized dermoscopy images of primary melanoma skin cancers versus abnormal

Fig. 1 Receiver-operator characteristic curve for the convolutional neural network (CNN) versus
the ensemble classifier (Eclass). In this comparison trial run, as in the case of 75% of our trial runs,
Eclass out-performed CNN, with a greater area under the receiver-operator characteristic curve
(AUROC). Although Eclass outperformed CNN in this study, both the Eclass and CNN predictive
models are expected to improve with larger training data sets. A theoretical curve, with minimum
AUROC diagnostic performance for translation, shows various screeners, susceptible to using the
technology at different parametric ROC curve values (red dots). These range from the patient—
whose high-specificity App would more accurately diagnose benign lesions that do not require
escalation—to trained professional dermoscopists, who would value seeing the imaging bio-
marker cues in a high-sensitivity App that helps them be sure they aren’t missing rare or difficult-
type lesions.
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nevi acquired with the EpiFlash™ (Canfield Inc., New Jersey) dermatoscope attached to a Nikon
D80 camera, where each image contained 1 to 5 megapixels after cropping in New York. The
second cohort, presented for the first time here, consisted of digital dermoscopy images acquired
with the Dermlite Foto (3Gen Inc., San Juan Capistrano, California), sized 5.9� 2.7 (mean ±
standard deviation) megapixels depending on lesion size in Barcelona, Spain. All lesions were
pigmented lesions that did not demonstrate a benign pattern11 under dermoscopy. The current
data set of 668 images was reduced to 349 images (one lesion per patient and one lesion per
image) by filtering out images with hair or surgical ink markings,12 lesion borders that extend
beyond the image field of view, or other features that prevented imaging biomarker computation,
like cases with extreme atypia such as those that were ulcerated, nodular/palpable, or did not fit
within the field of view of the dermatoscope were excluded. Both the CNN classifier3 and Eclass
classifier10 were trained on the same set of 668 images (113 melanomas and 236 nevi) and the
diagnostic performances of the resulting models were compared. CNN is a leading deep learning
approach while Eclass is our approach that implements a “wisdom of the crowd” approach of
sampling the prediction of a broad range of machine learning predictive models. Eclass has no
convolutional aspect so it has the benefit of being more easily interpretable by clinicians.

2.2 Eclass and Imaging Biomarkers Versus Deep Learning

The CNN used the raw pixels in the images as input features whereas Eclass operated on the set
of 38 imaging biomarkers, which were engineered to automatically quantify visual features that

Fig. 2 Example visualization of melanoma imaging biomarkers and machine learning diagnostic
App “Eclass Imaging Biomarkers” downloaded from Mac App Store. (a) Identification of abnor-
mally long finger-like projections in the pigmented network at the peripheral border of the lesion.
(b), (c) Screen captures from the Eclass Imaging Biomarkers, freely available at Mac App Store;
(b) shows a radial brightness analysis as an example of a searchable imaging biomarker set (c)
where the imaging biomarkers highlighted in red (Asymmetry and Colors) indicate quantitative
values that fall on the statistically malignant range of the spectrum. Since no imaging biomarkers
are highlighted green, users know that the algorithm found no normal features. Green circles con-
nected to arrows indicate analytic flow with the App. Clicking on “Show Diagnostic” (b) leads to the
(d) diagnostics screen, where clicking on “Show Diagnosis” reveals the standard histopathological
diagnosis. This clinical diagnostic workflow from dermoscopy image (a) to imaging biomarkers
(a–b) and to Eclass and CNN scores (d) could inform screening of new images acquired in the
by enabling clinicians to access automated digital diagnostics.
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dermatologists use during sensory cue integration in manual inspection of suspicious legions.
Imaging biomarkers were either binary, such as the presence [0 1] of a blue or gray dermoscopic
color (Fig. 3), integers such as the number of dermoscopic colors present [0–6], or continuous
such as the variation coefficient of branch length in pigmented networks, but all imaging bio-
markers were numbers that were high for melanoma and low for nevus. The detailed mathemati-
cal formulas for the imaging biomarkers used in Eclass can be found in the Appendix and in
Sec. S5 of the Supplementary Material13 of our previous publication10 and have been adapted and
reproduced in the methods section below. Both CNN and Eclass models predicted a melanoma
probability (between 0 and 1) of the invasive histopathological diagnoses for each skin lesion
using the noninvasive dermoscopy image (for CNN) or the imaging biomarkers derived from
that image (for Eclass). But only Eclass involved dimensional reduction to intuitive, visual IBCs.

2.3 Statistical Methods: IBC Combination to Form the Melanoma Eclass
Score

Both CNN and Eclass models were trained to predict a melanoma probability (between 0 and 1)
of the invasive histopathological diagnoses for each skin lesion using the noninvasive dermo-
scopy image (for CNN) or the imaging biomarkers derived from that image (for Eclass). But only
Eclass involved dimensional reduction to intuitive, visual IBCs described mathematically above.
Eclass was trained and cross-validated within a Monte Carlo simulation as previously described
in Sec. S3 in the Supplementary Materials13 of our previous publication10 and as discussed
below, included a hold-out test set for each Monte Carlo iteration that was not used for training.
Briefly, the 38 IBCs achieving diagnostic statistical significance (p < 0.05), 4 multicolor (MC),
and 34 single-color (SC) (using the most significant RGB color channel version), were input
into the 12 statistical/machine learning algorithms as predictive informatics programs given in
Table 2. We selected the SC IBC from the best color channel when there was any color channel
for an IBC that achieved statistical significance, including that SC IBC, and also including any
significant MC IBC.

The statistical classification methods for machine learning were chosen to represent the broad
universe of base classifiers.27 The C5.0 decision tree prioritized a subset of the IBCs and con-
ducted a series of comparisons between these IBCs and a set of thresholds ultimately leading to a

Fig. 3 Blue gray color (a simple imaging biomarker). Referred to as a “blue-white veil” in dermo-
scopy, this manifestation of the Tindal effect is a statistically-significant melanoma discriminant.
The lesion (a) is a melanoma. The ratio of the blue pixel intensity to the red pixel intensity (b) is the
first of three steps to quantitative visualization. A simple automatic (Otsu’s method) threshold (c) is
a second step to annotate the dermoscopy image with an overlay of a binary presence of a blue
color (d). Displaying this image to a medical professional as a visual sensory cue can augment the
cognitive process of visual sensory cue integration during melanoma screening.
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classification of each lesion. Each method output the melanoma likelihood for each lesion. The
likelihoods produced by all methods were combined into the overall endpoint of the analysis, the
ultimate best estimate of melanoma probability between zero and one, and the melanoma Eclass
score. Thus, we built a predictive model that combined the IBCs into a risk score for probability
of melanoma.

Our framework was set first to identify the most discriminative IBCs upon which the pre-
dictive model will be built. To this end, we first evaluate the differences between melanoma and
nevus for each one of the seven multicolor IBCs and also for the RGB channel-specific IBCs (41
IBCs for each red, green, and blue channels). For this univariate assessments, two-sided unpaired
t-tests, Wilcoxon–Mann–Whitney, and chi-square tests were used for continuous (e.g., IBC B1),
ordinal (e.g., IBC MC1), and categorical (e.g., IBC MC4) IBCs, respectively. Of the total 130
IBCs evaluated in our current data set (Fig. 4, Cross-Validation Set 1), 38 (4 multicolor, 9 red, 7
green, and 18 blue IBCs) were selected as the most significant discriminators (p < 0.05) between
melanoma and nevi to continue to the multivariate discrimination stage. When significant
differences for a given IBC were found in more than one channel, the most discriminative chan-
nel regarding its p-value was selected. This set of 38 discriminative IBCs measured from all the
349 lesions were used as inputs for our predictive model.

Figure 4 compares our current results (validation set 1) to the imaging biomarkers computed
on the data set from our previous publication. As such, Fig. 4 (Top) can be compared to Fig. 2 in
the previous publication,10 to show that our algorithm has been minorly updated to achieve
slightly better performance on the previously published data than previously published, with
two more imaging biomarkers achieving statistical significance than before and incremental
increase in area under the receiver operator characteristic curve (AUROC). Figure 4 arranges
the imaging biomarkers in their order of statistical significance in discrimination between mela-
nomas and nevi that are clinically dysplastic. The middle figure, on data from the clinic of Dr.
Puig, is the data reported in this publication. Above each imaging biomarker’s significance is an
alphanumeric code that correlates the imaging biomarker to its mathematical derivation below.
More imaging biomarkers were statistically significant in the blue channel in cross-validation set
1, due to factors such as the differences in imaging systems and patient populations. The imaging
biomarker that was the most significant blue channel imaging biomarker (B1) in our original
publication had greater significance in the green channel in the current study. The meaning of
imaging biomarkers that do not have a label is that these imaging biomarkers were not sta-
tistically significant in our original study (p < 0.05) but are in the current study. The description

Table 2 Broad universe of classification algorithms applied to melanoma discrimination.

Method Description

NNET Feed-forward neural networks with a single hidden layer14

SVM (linear and radial) Support vector machines15,16

GLM Logistic regression within the framework of generalized linear models17

GLMnet Logistic regression with the elastic-net penalization18

GLMboost Logistic regression with gradient boosting19

RF Random forests20

RP Classification and regression trees (CART) algorithm for classification problems21

KNN K-nearest neighbors algorithm developed for classification22

MARS Multiple adaptive regression splines23

C50 C5.0 decision tree algorithm for classification problems24

PLS Partial least squares25

LDA Linear discriminant analysis26
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of the statistical methods of Eclass has been modified from the methods in the Supplementary
Material13 of our original publication10 to reflect the statistical significance breakdown in the
current study. The data in Fig. 4 show that the imaging biomarkers behave similarly across data
sets and that a similar number of imaging biomarkers are statistically significant is similar across
study sets.

2.4 Clinical Study -to- Predictive Model

Figure 5 shows the overall study design by which we build a model with our experimental
data including paired dermoscopy and histopathological diagnoses. The double-blind study
attempted prediction of the biopsy-based histological diagnosis (melanoma or atypical nevus)
using only the pre-biopsy dermoscopy image and the IBCs derived from it.

After dermoscopy imaging and surgical excision of the imaged lesion, the standard diagnos-
tic method of histopathological evaluation was carried out as part of routine clinical care to yield
a diagnosis (melanoma or nevus) for each lesion in the study cohort.

The 668 binary diagnoses along with 668 correlating dermoscopic images comprised the
study data. No information about the patient’s age, sex, state of sun damage, or anatomical loca-
tion of the lesion was used. Dermoscopy images were randomized and coded to remove all
patient identifiers, then injected into the blind study arm that generated the image-processing
algorithm targeting melanoma features by extracting diagnostic IBCs without knowledge of the
histopathological diagnosis.

IBCs fed a collection of 12 classification methods that range from simple to sophisticated and
altogether cover different data structures. The collection of classification algorithms is given in

Fig. 4 Updated imaging biomarkers statistical significance in published data versus cross-valida-
tion data sets. In this imaging biomarker re-analysis of our published data and unpublished cross
validation studies, the height of the vertical bars represents the diagnostic significance of the im-
aging biomarkers in discriminating melanomas from nevi. Magenta bars are spectral imaging bio-
markers (ones that are derived from all color channels simultaneously) and red-green-blue bars
are gray-scale imaging biomarkers evaluated in the respective color channels. The imaging bio-
markers are sorted by discriminant p-value between melanoma and nevus. They are categorized
as those most significant in the blue channel (left), the green channel, the red channel and full
spectral (right). The total number significant (p < 0.05) is printed in black and the sum is tabulated
for each data set (color coded numbers). The colored imaging biomarker code (eg. B7 on top left)
on top of each bar, for each imaging biomarker references the written description, the mathemati-
cal derivation. This data shows that the imaging biomarkers are diagnostic across multiple screen-
ing sites because there are a similar number of significant biomarkers in cross validation sets 1
and 2 as there are in the original published data set (35, 38 and 35, respectively).
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Table 2 and includes the K-nearest neighbors (KNN),22 a simple and efficient nonparametric
distance-based method that has been successfully applied for more than 60 years. Artificial neu-
ral networks14 and support vector machines (SVM)15,16 were included to represent high-dimen-
sional complex nonlinear functions. To accommodate complex interactions between predictors,
we incorporated four methods following the decision tree/recursive partitioning paradigm: clas-
sification and regression trees (CART),21 C5.0,24 multiple adaptive regression splines (MARS),23

and random forests (RF).20 Logistic regression18 and linear discriminant analysis (LDA)26 are
based on solid statistical foundations. The former permits inference upon parameters by a prob-
abilistic approach and the latter is one of the oldest techniques for dimensionality reduction.
Partial least squares regression25,28 is of more recent development and simultaneously performs
regression/classification and dimensionality reduction.

2.5 Model Estimation/Training

To estimate each of the classifiers’ parameters and to evaluate the distribution of the prediction
error empirically, we created a Monte Carlo experiment. During each training iteration, the set of
lesions was randomly partitioned into training (75%) and test (25%) sets. For each classifier,
model parameters were estimated by maximizing a partial area under the ROC curve obtained by
limiting the specificity to be within the range 0% to 40% and tuning parameters were estimated
by 10-fold Cross-Validation. The best configuration for each classifier was used to predict the
25% hold-out lesions in the test set.

Ensemble of predictive algorithms likely generate more accurate predictions than single
algorithms.29,30 The melanoma Eclass score is a diagnostic for melanoma discrimination
obtained by evaluating the median probability across K available classifiers

EQ-TARGET;temp:intralink-;sec2.5;116;240Eclass Score ¼ medianfProbiðMelanomajMÞg; i ¼ 1;2; : : : ; k;

where Probi ∈ f0;1g is the probability of the lesion being a melanoma, as predicted by the i’th
classifier based on a set of IBCsM. Monte Carlo simulations obtain the empirical distribution of
the Eclass score for each lesion. The Eclass score distribution shows that the number of false-
positives (melanomas classified as nevi) is lower than the false-negatives; indicating that our
classification strategy is more sensitive than specific.

2.6 Convolutional Neural Network

The CNN was based on a widely used ResNet-50 architecture instantiated with weights pre-
trained on the ImageNet database for transfer learning and modified with output layers designed
for binary classification. Image augmentation (flip, zoom, and rotate) and minority class (mela-
noma) oversampling was used during CNN training to prevent overfitting to the training data and

Fig. 5 This double-blinded study retrospectively tested prediction of the histopathological biopsy
diagnosis using only the dermoscopy images acquired just prior to biopsy. Co-author S. L.
assembled and distributed the latter to Co-author D. G. and the former as an input to the Eclass
algorithm.
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predictive bias toward the majority class (nevus) respectively. Pixel values for training and test
images were normalized to have zero mean and standard deviation of 1. During oversampling,
augmented versions of minority class images were overrepresented in the training data such that
the model was trained on an equivalent number of melanoma and nevi images. Test time aug-
mentation was used during inference wherein class predictions were generated for five randomly
augmented versions of each test image and the majority vote was used as the final predicted
class. The CNN model trained until validation data set accuracy had not improved for ten epochs
and the resulting model, with highest validation accuracy, was saved.

2.7 Performance Analysis

The receiver operator characteristic (ROC) curve and the area under the curve (AUROC) were
used to evaluate diagnostic performance. Each method (CNN and Eclass) produced a distribution
of scores from melanoma images and a second distribution of scores for benign images and we
swept the diagnosis criterion across those two distributions, plotting proportion of hits as a func-
tion of proportion of false alarm (i.e., the ROC) and calculated the area under the curve. Different
cross-validation runs (10 for CNN and 1000 for Eclass) were used to generate a distribution
of AUROCs for each method. We compared the methods by comparing a randomly drawn
AUROCs from each method’s AUROC distribution and repeating that process to determine what
percentage of the time Eclass outperformed CNN.

The visualization potential of Eclass is developed as an App for imaging biomarker visual
sensory cue integration31 that was developed based on the results of our institutional review
board (IRB)-approved human subjects research (RU DGA-0923) on clinicians using the App.
Our human subjects research was used to collect data regarding specific features that the cli-
nicians found useful and whether they were likely to implement such a technology if it was
available.

3 Results

Eclass trained several independent machine learning algorithms (see Table 2) 1000 times in 150 s
compared to the CNN model, which trained 10 times in 52 h on an Nvidia Quadro M5000 GPU.
The final Eclass risk score for each lesion was the median risk score produced by the eight
independent machine learning algorithms. Figure 6 shows the original analysis on the published
data along with the performance of the various dermoscopy algorithms used in medical practice,
which are abbreviated in the legend and numbered with their respective literature references
(see Table 3). CNN was computationally intensive, taking more time to learn diagnostically rel-
evant features than the time required by Eclass. This comparison does not include the computa-
tional time required to calculate the imaging biomarkers that fed Eclass, which was about 3 h.

Performance on the current data set (Validation Set 1) was characterized as the mean and
standard deviation of the AUROC. For Eclass, the AUROC was 0.71� 0.07 with a 95% con-
fidence interval of [0.56 0.85] while the CNN achieved an AUROC of 0.67 with a 95% con-
fidence interval of [0.63 0.71]. In a Monte Carlo simulation that randomly drew ROCs from the
10 CNN ROCs to compare to ROCs randomly drawn from the 1000 Eclass ROCs, the AUROC
was greater for Eclass 74.88% of the time. The AUROC for both models is lower than in other
studies with larger numbers of more typical nevi. This performance comparison suggests that
codifying dermoscopy features into imaging biomarkers distills information from the image,
enabling the Eclass model to operate more efficiently than the CNN and without access to the
original image pixels.

The diagnostic score was the least favorite feature of clinicians who tested the IBC App. 10
clinicians, aged 26 to 64 years old, scored the App an average of 2.3 out of 4 for utility in their
respective clinical settings. Scores ranged from 2 to 4 with the App being favored by younger
clinicians (score ¼ −0.037 × Ageþ 4.17, R2 ¼ 0.41). Figures 2(b)–2(d) shows screen captures
from the App after revisions based on the clinicians’ feedback in the study data. The major result
we achieved with our human subjects’ research on dermatologists is that the dermatologists have
a very small bandwidth to process IBCs compared to the analytical bandwidth of the computer.
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Therefore, we devised a scheme by which we showed only diagnostically significant imaging
biomarkers (ones that were very low indicating nevus or very high indicating melanoma) as
visual aids. Figure 7 shows this approach by which we compared each IBC value to a population
of values, which we verified to be normally distributed, to display it in a clinically-appropriate
way so as not to distract the App user with too much unimportant detail.

4 Discussion

There is an ongoing need to develop digital imaging biomarker libraries in melanoma detection
and other diagnostic fields. In contrast to deep learning, which has a convolutional aspect and
many features that are hard for clinicians to understand, pre-existing image analytical frame-
works (e.g., dermoscopy) can be codified to provide a transparent link between machine and
human intelligence. The App we provide31 is an example for demonstration that visualizes a
subset of the imaging biomarkers on random images drawn from a previously published10 study
set, highlighting the biomarkers red if they are statistically malignant or in green if they are
statistically benign, as defined as falling 1.5 standard deviations above or below the mean value
for that imaging biomarker across a reference set of training images, respectively. App users can
thus be directed to imaging biomarker visual sensory cues [Fig. 2(c)] of particular diagnostic
importance to form a mental analysis before selecting “show diagnostic” to show [Fig. 2(d)] both
the CNN and Eclass risk scores as additional inputs in the cue integration process. After making
a test diagnosis, selecting “show diagnosis” reveals [Fig. 2(e)] the gold standard biopsy-based
diagnosis.

Though we report the median melanoma likelihood produced by the various machine learn-
ing approaches as the Eclass score, one approach (the C5.0 decision tree approach) outperformed

Fig. 6 Diagnostic performance results vs. published techniques. The receiver-operator character-
istic (ROC) curves for the individual machine learning approaches (thin colored lines) are outper-
formed by the compound Eclass score (thick black line) which is the median of the individual risk
scores. Literature data points are marked with symbols that indicate if they are mostly human
(square) or computer (circle)-derived.
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the Eclass score at 98% sensitivity, yielding sensitivity/specificity = 98%/44% in our originally
published study. This result was produced using branching logic. Figure 8 shows an illustration
of this branch choice approach, which may be the most promising approach as instructive to
visual examination. This analysis may be able to “teach back” to dermatologists both new visual
dermoscopic features and new ways to combine IBC evaluations sequentially. Our full diagnos-
tic, which involves calculating a melanoma probability for each machine learning approach and
taking the median of those probabilities as the Eclass, may be reduced for translation to visual
screening. Thus, automated, unconstrained visual-aided screening with optimized decision trees
shows feasibility for human use without computer vision. Also, it may be desirable from the
point of view of decreasing computation time and/or complexity during evaluation to reduce
the number of statistical classification approaches from the 13 used here to 1 or 2 (e.g., the
C5.0 tree in Fig. 8) in cases where such a small subset continues to outperform the Eclass ensem-
ble approach that uses the median result of all the classifiers.

Table 3 Diagnostic sensitivity and specificity for melanoma detection by human pattern recog-
nition (*) and by machine-augmented pattern recognition (**). The final two listed other techniques
(***) represent the current state of commercially available clinical machine-vision systems.

Method Sensitivity (%) Specificity (%)

*GP referral†32 51 71

*GP referral, dermoscopy†32 79 72

*Pattern analysis33 85 79

*ABCD33 84 75

*ABCD†34 56 92

*7-Point checklist35 78 65

*7-Point checklist‡34 58 92

*CASH36 98 68

*Menzies35 85 85

*Malignancy grading‡34 73 81

*Total body photography37 75 74

*Dermoscopy38 90 90

*Confocal microscopy39 90 86

**Prelim. SIAscopy40 50 84

**Prelim. SIAscopy40 44 95

**Solar Scan41 91 68

**Prelim. Melafind 142 98 44

**Prelim. Melafind 242 91 38

**Image processing43 77 87

***SIAscopy44 86 65

***Melafind45 98 10

Eclass10 98 36

†= referral to a dermatologist by a general practitioner nonexpert dermoscopist
‡= averaged over in situ and stage I melanoma.

Gareau et al.: Deep learning-level melanoma detection by interpretable machine learning. . .

Journal of Biomedical Optics 112906-11 November 2020 • Vol. 25(11)



4.1 Analysis in Context

Our findings have implications for frequent machine learning scenarios where the available train-
ing set is too small to train high performing deep learning models. Although deep learning sys-
tems for breast cancer46 screening and melanoma screening3 have surpassed human experts in
narrow prediction tasks, they have relied on tens or hundreds of thousands of training examples,
respectively. Our EClass model, on the other hand, has a model parameter size to data size ratio
in the underparameterized “classical” regime of deep learning allowing it to outperform the deep
learning model.47 Our work provides a head-to-head comparison of CNN versus Eclass on a
limited data set and our AUROC of 0.71 is less than the 0.91 published3 for melanoma detection
based on different training data. Eclass must be evaluated head-to-head against other methods in

Fig. 7 GUI/APP minimalist IBC visualization strategy. We designed IBC visualization methodol-
ogy such that the display reproduced the dermoscopic image with a visual representation of the
most important IBCs used by the predictive models in generating a melanoma risk score. When
IBCs are less than a standard deviation below their mean (across a population of lesions), their
names are visualized with green background as an assurance whereas if they are more than a
standard deviation above the mean value, they are visualized with red background as a warning.
Examples of warnings include the Asymmetry IBC and the number of Colors IBC in Fig. 2(c).

Fig. 8 Decision tree built with the C5.0 algorithm. The algorithm was applied to predict lesions type
(melanoma vs. nevus) with the full originally published data set that included 112 lesions and 33
IBCs. The decision tree has 10 decision nodes (#1, #2, #3, #5, #9, #10, #11, #14, #15, and #16)
and 11 terminal nodes (#4, #6, #7, #8, #12, #13, #17, #18, #19, #20, and #21). The algorithm
selected decision nodes based on four IBCs from the blue channel (B1, B6, B7, and B15),
five IBCs from the red channel (R4, R6, R8, R12, and R13) and one multicolor IBC (MC1).
At the terminal nodes the proportion of melanomas (light gray) and nevi (dark gray) are shown
with stacked bar plots. The final classification has yielded 7 pure terminal nodes (#4, #6, #7,
#8, #13, #19, and #21) where melanoma or nevi have 100% prevalence. The nodes #4 and
#20 together have 59.8% of the lesions and they perfectly discriminate nevi and melanoma,
respectively.
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larger studies in the future, but what makes the present study significant is that the Eclass model
was trained on 10×more training images (349) than the number of imaging biomarkers17 used as
free parameters (349 > 10 × 30). By comparison, the number of CNN model free parameters
was ∼20million. This means that the utilization of imaging biomarkers was a preprocessing step
in Eclass (but not CNN) that distilled diagnostic image content. In future work, EClass should
be compared to CNN for larger data sets in which the training data size results in an over-
parameterized EClass model. Although required computational resources were minimal for
CNN training on this small dataset, increasing the size of the dataset to take advantage of the
high-parameter CNN would significantly increase CNN training resources. For example,
increasing the data set size from the current 349 images to the approximately 130,000 images
used by Esteva et al.3 would result in a significant increase in training cost.

4.2 Spectral Properties of IBCs

IBCs generally show that melanoma exhibits spectral and structural irregularity versus benign
nevi. This can occur at increasing depth in the skin and be shown in the blue, green, and red
channels. Not surprisingly, IBCs exhibit spectrally variant diagnostic statistical significance,
and we expect that result to play out in our ongoing hyperspectral imaging study.48

One hypothetical mechanism for the spectral dependence of diagnostic importance as a func-
tion of wavelength is deeper penetration by longer wavelengths (e.g., red), and thus, the ability
to differentially visualize differing three-dimensional tissue or chromophore characteristics of
melanoma invading the dermis and superficial epidermal imaging by the shorter (e.g., blue)
wavelengths of basal layer atypia or junctional nests of melanocytes associated with melanoma.
While more IBCs are needed to cover more clinical presentations, IBCs also still need to be
related to underlying tissue structure, including proliferative and invasion patterns of melanoma
cells, and molecular pathways impacting pigment distribution. In the green channel, where sat-
uration/desaturation of metabolically active areas of active tumor growth impacts the image,
contrast captures polymorphic vasculature associated with melanoma and other skin cancers
(basal cell and squamous cell carcinoma).

Within a hyperspectral image of a pigmented lesion, one can include measures of hemoglo-
bin saturation and desaturation, which may help to identify metabolically active regions within
lesions. The basis for the “steeper edge slope” (IBC R5) in melanomas does not yet have a
cellular basis, but we speculate that it might represent growth of melanocytes in nests at the
dermal-epidermal junction at the edge of a melanoma, whereas atypical nevi tend to have only
individual junctional melanocytes (nevus cells) that are decreasing in number at the edge of this
kind of lesion, whereas deeper nests of melanocytes/nevus cells are organized in the central or
“body” region of an atypical nevus.49

4.3 Strengths and Limitations

A limitation of Eclass using imaging biomarkers in this study was that there were 319 discarded
images. At present, our method requires analysis of images that show the complete lesion with
full borders and some adjacent normal skin, and the images cannot include hair, markings on
the skin, or bubbles in the immersion media optically coupling the imaging device to the skin.
In these “defective” images, one or more imaging biomarkers did not successfully compute
and Eclass analysis failed but CNN analysis still worked. A number of potential solutions for
this exclusion problem could enable practical clinical use, including indications to re-image
and remove hair over the lesion. Although this problem must be reduced, clinicians already
operate by the “when in doubt, cut it out” rule, so providing that exclusions can be reduced to
<10%, we expect clinical utility. A second limitation of the current approach is that it needs
retraining for each population (e.g. New York versus Barcelona in this report), so any best
future case for the machine learning needs to be indicated for the population on which it was
trained.

Since the number of imaging biomarkers is much less than the number of features created by
CNNs, the incremental processing cost of added imaging biomarkers is small compared to the
overall processing cost difference between Eclass and CNN. A strength of machine learning
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diagnostics using Eclass and IBCs (that may be challenging from the regulatory perspective) is
that the approach can be developed by collaborating researchers combining complementary IBC
sets. A repository of executable MATLAB® functions (for IBCs) is needed. Another need is for
the exploration of compound models. For instance, the CNN risk score itself could be added as
an additional single imaging biomarker in the Eclass approach or even downstream as an added
member of the ensemble. The cost would be computational, and the benefit would be that the
deep learning could produce images of similar lesions with known diagnoses and similar deep
learning fingerprints to which a clinician could confirm visual similarity and thus infer probable
diagnosis similarity.

4.4 Future Directions

Needed are imaging biomarkers that recognize and correct for image defects to reduce necessary
exclusions (a potential bias). This will ensure that more imaging biomarkers compute success-
fully, potentially leading to diagnostic confidence that the lesion contains only known features
and those features have been successfully analyzed. Thus, defects in images that prevent Eclass
analysis may be automatically identified and corrected, whether implementing deep learning or
not. In contrast, defects in imaging biomarkers present opportunities to improve pathological
interpretation of light-tissue interactions and defects in machine learning algorithms arise from
biases in training data.

Although Eclass and imaging biomarkers aren’t sufficiently generalized (i.e., Fig. 4
differences across sets), which would be required to analyze lesions in real time from mobile
phone-coupled dermatoscopes, Fig. 2 and the App illustrates how the data pipeline from der-
matoscope image to guided biopsy decisions could work. This simulated clinical workflow high-
lights the translational perspective that the dermatologist can be presented a manageable amount
of machine learning-augmented reality to make a decision based in part by that input but also by
their medical discretion.

5 Appendix: : Mathematical Formulas for Melanoma Imaging
Biomarker Cues

5.1 Multi-color IBCs

Multicolor IBCs were those derived from all the color channels of the red/green/blue image
channels simultaneously, as opposed to single-channel IBCs [Eqs. (7)–(36)] presented later that
were calculated from individual color channels. Thus, multicolor IBCs only had one version
whereas each single color-IBC had three versions (one for each color channel).

Dermoscopy includes analysis of the colors present in any given lesion and there are
six colors that dermatologists generally identify in lesions [light brown, dark brown, black,
red, blue-gray, and white]. As direct examples, segments of dermoscopic colors were hand-
segmented within the published data10 set blind to the gold standard diagnoses. At least three
images containing segments of each dermoscopic color were chosen for pixel extraction and
storage as exemplary for each of the six dermoscopic colors of accepted dermoscopy practice.
We generated a simple color metric to assign pixels a categorical color: if the pixel ratio of red to
blue was within one standard deviation of the mean for that color, and the same was true for red
to green, and blue to green, then the pixel was assigned that color. For each pixel, a sequential
check was made for the presence of colors in the order (light brown, dark brown, black, red,
blue-gray, and white). In this manner, the two most common colors (light brown, dark brown),
were first identified and labeled as the least suspicious group. Next, black and red were iden-
tified and labeled (as more suspicious) using the same color identification logic. Finally, blue-
gray and white were identified as most suspicious. Thus, the algorithm checked each pixel for
each color, leaving the color automatically detected as the last checked (most suspicious) color
for that pixel.

A color list (CL) was produced for each lesion indicating the presence or absence of each
color. For instance, CL = [1 1 1 0 0] would result from a dermoscopic image where the lesion
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contained light brown, dark brown, and red but no black or blue-gray/white. MC1 is then the
number of dermoscopic colors identified in the lesion.

EQ-TARGET;temp:intralink-;e001;116;711MC1 ¼
X5
i¼1

CLðiÞ: (1)

Let Lðy; xÞ denote an image mask of the lesion segment with value 1 inside the lesion and value 0
outside the lesion. Let Lredðy; xÞ, Lgreenðy; xÞ, and Lblueðy; xÞ be masks derived from the red,
green, and blue channels of the color image, respectively. MC2 is then the normalized difference
in lesion size between the red and blue color channels

EQ-TARGET;temp:intralink-;e002;116;612MC2 ¼
PNx

x¼1

PNy
y¼1 Lredðy; xÞ −

PNx
x¼1

PNy
y¼1 Lblueðy; xÞP

Nx
x¼1

PNy
y¼1 Lredðy; xÞ

: (2)

Let RðθÞ be the length of the radial between the geometric center of the lesion and a point on the
lesion border that sweeps over the angle θ from θ ¼ 0 to θ ¼ 2π radians. Let RRðθÞ, RGðθÞ, and
RBðθÞ be three versions where the geometric centers and the borders are those extracted from
Lredðy; xÞ, Lgreenðy; xÞ, and Lblueðy; xÞ, respectively.

EQ-TARGET;temp:intralink-;e003;116;513RvarðθÞ ¼
σðRRðθÞ; RGðθÞ; RBðθÞÞ
hRRðθÞ; RGðθÞ; RBðθÞi

: (3)

MC3 is then the mean coefficient of variation of lesion radii among the color channels, where h i
denotes the expectation value or mean operator.

EQ-TARGET;temp:intralink-;e004;116;444MC3 ¼ hRvarðθÞijθ¼2π
θ¼0 ; (4)

where, as an illustration of the definition of the mean value, for a set x that contains n elements

EQ-TARGET;temp:intralink-;e005;116;400hxi ¼
P

n
i¼1 xi
n

: (5)

MC4 is the binary presence of blue-gray or white in the image. Figure 3 shows MC4, which is
likely the simplest IBC to visualize.

EQ-TARGET;temp:intralink-;e006;116;334MC4 ¼ CLð5Þ: (6)

5.2 IBCs with blue-channel diagnostic significance

A large set of IBCs were created based on our angular sweep analysis, shown in Fig. 9. We
quantified brightness variation on an angular sweeping arm that connected the geometric center
of the lesion and a point on the border tracing that border clockwise. From the center, radial arms
projected to the lesion border and rotating clockwise were used as regions of interest to quantify
image characteristics along the arc of rotation. The series of arcs created by radial sweep around
the center covering the entire 360-degree view of the lesion, was analogous to the sweep of hands
around an analog clock. The IBC-producing mathematical operations (given in Sec. S5 in the
Supplementary Materials13 for Ref. 10) either produced direct transformations of the actual data
(i.e., Fig. 9) or quantified differences between the data and mathematical models used to estimate
the data’s deviation from smoothly transitioning functions (i.e., Fig. 10).

Let pðr1Þ be the pixel brightness along a radial line r1 connecting the center point of the
lesion and a point on the peripheral edge of the lesion. Let RmðθÞ be the mean pixel brightness
hpðr1Þi along a set of lines that vary as specified by the angle θ. As θ varies in increments of dθ
one full rotation from zero to 2π radians (360 degrees), the set of lines r1 sweep the lesion like a
clock arm sweeping an analog clock.

EQ-TARGET;temp:intralink-;e007;116;104RmðθÞ ¼ hpðr1Þijθ¼2π
θ¼0 ; (7)

EQ-TARGET;temp:intralink-;e008;116;61RstdðθÞ ¼ σðpðr1ÞÞjθ¼2π
θ¼0 ; (8)
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where an illustration of the definition of the standard deviation, for a set x that contains n ele-
ments

EQ-TARGET;temp:intralink-;e009;116;167σðxÞ ¼
�

1

n − 1

Xi¼n

i¼1

ðxi − hxiÞ2
�
: (9)

B1 is then the average of the absolute value of the derivative of RmðθÞ over the angular sweep
is the mean instantaneous brightness shift from one angular analysis position to the next over the
entire 360-degree angular range.

EQ-TARGET;temp:intralink-;e010;116;83B1 ¼ hðjRmðθnÞ − Rmðθnþ1ÞjÞijθ¼2π
θ¼0 : (10)

Fig. 9 Coordinate transformation and illustration of IBC derivation using angular clock sweep
analysis. In images of a nevus (a) and a melanoma (e), lesion border and center (b, f). (c, g) show
the blue channel data under a coordinate transformation from x–y to R-θ such that the bottom row
of pixels in (g) is the same pixel in f, namely the center pixel (white circle) and the top row of pixels
in (g) traces out the lesion border clockwise. (d, h) analyze the pixel brightness statistics (mean in
black and standard deviation in blue) of (c, g) in the vertical direction which is along the radial in
(b, f). In (d, h), IBC B12, for example, is derived from the radial variation range, which is the vertical
separation of the horizontal dashed lines (d, h).
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B2 is the variance over the angular sweep of the variance in pixel brightness over the radial
sampling arm. This variable is increased when there are some angles at which the lesion contains
even pigmentation but others that contain variable pigmentation such as in reticular or globular
patterns of bright and dark areas.

EQ-TARGET;temp:intralink-;e011;116;303B2 ¼ σðRstdðθÞÞjθ¼2π
θ¼0 : (11)

Let peðr2Þ be the pixel brightness along a second radial line r2 of the same length as r2 and at
the same angular sweep angle θ but extending from half-to-1.5 times the lesions radius RðθÞ
instead of 0-to-1 such as to be centered on the border between lesion and normal skin. PeðrÞ has
the characteristic that half of its pixels (within the lesion) are darker than the other half of its
pixels (outside the lesion). Let se® be a mathematical model error function across the lesion
border with three fitting parameters: Min, Max, and Slope that are iteratively adjusted to min-
imize the least squares difference between peðrÞ, the data and seðrÞ. erfðxÞ is defined as twice the
integral of the Gaussian distribution with 0 mean and variance of 1/2, as shown below with the
dummy variable t. Considering rb as the lesion border pixel with approximately the mean pixel
brightness in peðrÞ and exactly the mean brightness of seðrÞ, seðrÞ is defined as

EQ-TARGET;temp:intralink-;e012a;116;152erfðxÞ ¼ 2ffiffiffi
π

p
Zx

0

e−t
2

dt; (12a)

EQ-TARGET;temp:intralink-;e012b;116;87feðrÞ ¼
erf

�
r−rb
Slope

�
2

; (12b)

Fig. 10 Fitting for edge demarcation. Edge demarcation was quantified as the slope of the tran-
sitioning from dark pixels inside the lesion to bright pixels outside the lesion. Increased slope of the
fitting mathematical function resulted from increased lesion border demarcation. The two radial
lines (Line 1, Line 2) drawn on the lesion include the lesion border from inside the lesion where
the pixels are dark inside the lesion to outside the lesion where the pixels are bright in normal skin
indicate illustrate two locations where the demarcation is gradual (Line 1) and sharp (Line 2). The
pixel brightness extracted along these two lines (x for Line 1 and o for Line 2), pe ðr Þ was fit to a
mathematical model), se ðr Þ to yield the fitting parameters, which were used to produce IBCs B3,
B4, B9, B13, B14, R1, R5, and R10. This includes the edge demarcation slope, which is the slope
of the solid line at the lesion border between normal skin and lesion and the error in the fit, which is
the sum of the squared differences between the data points, pe ðr Þ and the error function fit (solid
line) se ðr Þ. Melanomas had a sharper border, a higher degree in variability of border sharpness
and a greater fitting error.
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EQ-TARGET;temp:intralink-;e012c;116;723seðrÞ ¼ Minþ ffeðrÞ −min½feðrÞ�g ×Max: (12c)

B3 is then the mean error between the model seðrÞ and the data peðrÞ evaluated over a range
equal to the distance between the center and the lesion border but centered on the edge of the
lesion. This error measurement is high if the lesion brightness does smoothly transition between
dark inside the lesion and bright outside the lesion. The fitting algorithm, fminsearch() in
MATLAB® (Mathworks Inc., Natick, Massachusetts), was limited to 200 fitting iterations. If
convergence was reached before the 200-iteration limit, the result was flagged as one type while
fits that were cut off at the 200-iteration limit were flagged as a second type. B3 included only
results of the second type, that did not converge by the time the iteration limit was reached.

EQ-TARGET;temp:intralink-;e013;116;618B3 ¼
� XR¼1.5D

R¼0.5D

½peðrÞ − seðrÞ�2
�				

θ¼2π

θ¼0

: (13)

B4 is the mode error, calculated the same as B3 but with the mode() operator instead of the
mean h i operator, calculated for only the data that exceeded the number (200) of fitting iterations
allowed.

EQ-TARGET;temp:intralink-;e014;116;530B4 ¼ mode

� XR¼1.5D

R¼0.5D

ðpeðrÞ − erfðrÞÞ2
�				

θ¼2π

θ¼0

: (14)

B5 is the standard deviation of the set of derivative values of the mean brightness. The vari-
ance of the derivative of brightness describes how much variability in the instantaneous change
in brightness there is over the angular sweep. If some angular ranges are flat (low intra-range
brightness derivative) and some ranges vary wildly, this variable will have a high value.

EQ-TARGET;temp:intralink-;e015;116;431B5 ¼ σ

�
dRm

dθ

�
¼ σðjRmðθnÞ − Rmðθnþ1ÞjÞjθ¼2π

θ¼0 : (15)

B6 was calculated like B3 except that it used all data and was not restricted to the data requir-
ing more fitting iterations than MATLAB® was allowed to execute. Similarly, B7 used only the
fits that did not require more iterations than (200) the maximum number of fitting iterations
allowed.

A watershed analysis was developed to identify pigmented network branches. First, gray-
scale images extracted from individual channels were passed through a rank filter which reset
the gray-scale value of each pixel to the rank in brightness of the pixel under consideration with
its group of neighboring pixels. This step was needed prior to the watershed analysis to act as a
high-pass spatial filter and eliminate overall brightness variations in the lesion, leaving the local
variations such as those caused by pigmented networks to be identified by the watershed analy-
sis. Branches, which were skeletonized to a single pixel width down their spine, were charac-
terized by three features: their length, their mean brightness, and their angle with respect to the
lesion centroid. The MR clock sweep scored the mean pixel intensity of the branches IbranchðθÞ,
the standard deviation of intrabranch pixel intensity variation σbranch, the mean length of the
branches LbranchðθÞ and the total number of branches NbranchðθÞ within a differential angle
element that traced with the clock MR clock sweep. B8 is then the normalized inter-branch
pixel intensity variation.

EQ-TARGET;temp:intralink-;e016;116;181B8 ¼ σðIbranchðθÞjθ¼2π
θ¼0 Þ

hIbranchðθÞjθ¼2π
θ¼0 i : (16)

B9 is the standard deviation of the error measurement like in B3, except that the standard
deviation operator σ is used instead of the mean h i operator. B9 was evaluated only for fits
requiring more fitting iterations than the 200 iterations allowed.
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EQ-TARGET;temp:intralink-;e017;116;735B9 ¼ σ


 XR¼1.5D

R¼0.5D

½peðrÞ − erfðrÞ�2
�				

θ¼2π

θ¼0

: (17)

B10 is the normalized angular coefficient of brightness variation.

EQ-TARGET;temp:intralink-;e018;116;681B10 ¼ σ½RmðθÞ�
hRmðθÞi

: (18)

B11 The standardized variance of branch lengths.

EQ-TARGET;temp:intralink-;e019;116;623B11 ¼ σðLbranchÞjθ¼2π
θ¼0 Þ

hLbranchjθ¼2π
θ¼0 i : (19)

B12 is the normalized range of angular brightness.

EQ-TARGET;temp:intralink-;e020;116;564B12 ¼ max½RmðθÞ� −min½RmðθÞ�
hRmðθÞi

: (20)

B13 is calculated as is B6 except the standard deviation operator σ is used instead of the mean
h i operator. Like B6, B13 used all the data.

EQ-TARGET;temp:intralink-;e021;116;495B13 ¼ σ

� XR¼1.5D

R¼0.5D

½peðrÞ − erfðrÞ�2
�				

θ¼2π

θ¼0

: (21)

B14 Is the standard deviation σðÞ of the error measurement as in B13 except that B14 was
evaluated only for the fits that completed within the allowed number (200) of fitting iterations.

B15 Is the mean intrabranch coefficient of variation.

EQ-TARGET;temp:intralink-;e022;116;407B15 ¼
�
σðIbranchðθÞÞ
hIbranchðθÞi

				
θ¼2π

θ¼0

�
: (22)

5.3 IBCs with green-channel diagnostic significance

Let PerimG be the length of the perimeter of the lesion segment in the green channel Lgreen. G1 is
the length of the lesion segment border normalized by the square root of the area of the lesion
segment.

EQ-TARGET;temp:intralink-;e023;116;296G1 ¼ PerimGffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
Nx
x¼1

PNy
y¼1 Lgreen

q −
2πffiffiffi
π

p : (23)

5.4 IBCs with red-channel diagnostic significance

The fitting algorithm yielded a slope S for the sigmoidal edge fit. R1 was the standard deviation
of the slope fit values

EQ-TARGET;temp:intralink-;e024;116;191R1 ¼ σðSÞjθ¼2π
θ¼0 : (24)

R2 is the fractal dimension of the lesion segment binary image as defined as50

EQ-TARGET;temp:intralink-;e025;116;146R2 ¼ D½Lredðy; xÞ�: (25)

Each branch segment in terminated on two ends in either a branch point or an end point. R3 is
the connectedness of the pigmented network, defined as the ratio of the number of branch points
NBP to the number of endpoints NEP.
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EQ-TARGET;temp:intralink-;e026;116;735R3 ¼ NBP

NEP

: (26)

R4 is the size of the lesion segment Lred, which is the sum of the binary mask valued at one
inside the lesion segment and zero outside the lesion segment.

EQ-TARGET;temp:intralink-;e027;116;676R4 ¼
XNx

x¼1

XNy

y¼1

Lred: (27)

R5 is the mean slope (S) for the edge fit function seðrÞ [as used in Eq. (13)] evaluated only for
the fits that did not require more iterations of the fminsearch() operator than the 200 allowed.

EQ-TARGET;temp:intralink-;e028;116;602R5 ¼ hSjθ¼2π
θ¼0 i: (28)

Let the instantaneous radius of the lesion, as in Eq. (3), be denoted by RRðθÞ over the angular
sweep of θ. R6 is then the coefficient of variation in the lesion radius over the angular sweep

EQ-TARGET;temp:intralink-;e029;116;546R6 ¼ σðRredðθÞjθ¼2π
θ¼0 Þ

hRredðθÞjθ¼2π
θ¼0 i : (29)

Let Nbðθ; dθÞ be the number of pigmented network branches identified in a differentiual
angle emelment dθ as a function of angle θ over the angular sweep. R7 is then the range in
number of branches detected as a function of angle.

EQ-TARGET;temp:intralink-;e030;116;463R7 ¼ max½Nbranchðθ; dθÞ� −min½Nbranchðθ; dθÞ�: (30)

R8 is the range in the standard deviation of pixel brightness on the angular sweep arm over
the angular sweep.

EQ-TARGET;temp:intralink-;e031;116;409R8 ¼ maxðRstdðθÞjθ¼2π
θ¼0 Þ −minðRstdðθÞjθ¼2π

θ¼0 Þ: (31)

Pixels with the lesion segment were scored as a set Plesion. The coefficient of variation for
pixels within the lesion segment was calculated by dividing the standard deviation of intrale-
sional pixel brightness by the mean lesional pixel brightness. R9 is then the coefficient of varia-
tion in pixel brightness within the lesion.

EQ-TARGET;temp:intralink-;e032;116;328R9 ¼ σðPlesionÞ
hPlesioni

: (32)

R10 is the mode error, calculated the same as B4, but evaluated only for the fits that did not
exceed the number of fitting iterations (200) allowed.

EQ-TARGET;temp:intralink-;e033;116;261R10 ¼ mode

� XR¼1.5D

R¼0.5D

½peðrÞ − erfðrÞ�2
�				

θ¼2π

θ¼0

: (33)

The maximum asymmetry of the lesion was normalized by the eccentricity of the lesion E
as calculated using the stats. Ecentricity function in MATLAB®. This normalization enabled
de-emphasis of uniform ovals as asymmetric. R11 is then the maximum asymetry of the lesion
silhouette

EQ-TARGET;temp:intralink-;e034;116;163R11 ¼ max

�
A
E

�
: (34)

R12 is the sum of the normalized derivitive in lesion radius D over the angular sweep

EQ-TARGET;temp:intralink-;e035;116;107R12 ¼
Xθ¼2π

θ¼0

abs½Rredðθ; dθÞ − Rredðθ − 1; dθÞ�: (35)
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R13 is the asymetry of the lesion silhouette evaluated in the standard technique (Fig. S10 in
the Supplementary Material for Ref. 10)13

EQ-TARGET;temp:intralink-;e036;116;711R13 ¼ Ajθsym −
π

2
: (36)
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