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Abstract. Corneal thickness (CoT) is an important tool in the evaluation process for several disorders and in
the assessment of intraocular pressure. We present a method enabling high-precision measurement of CoT
based on secondary speckle tracking and processing of the information by machine-learning (ML) algorithms.
The proposed configuration includes capturing by fast camera the laser beam speckle patterns backscattered
from the corneal–scleral border, followed by ML processing of the image. The technique was tested on a series of
phantoms having different thicknesses as well as in clinical trials on human eyes. The results show high accu-
racy in determination of eye CoT, and implementation is speedy in comparison with other known measurement
methods. © The Authors. Published by SPIE under a Creative Commons Attribution 4.0 Unported License. Distribution or reproduction of this work
in whole or in part requires full attribution of the original publication, including its DOI. [DOI: 10.1117/1.JBO.24.12.126001]
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1 Introduction
Corneal thickness (CoT) measurement has gained relevance
in recent years. Evaluation of CoT is performed in a wide range
of disorders and procedures, such as refractive surgery, assess-
ment of ocular hypertension, corneal disease, and glaucoma.1,2

It is also an increasingly important measurement for precise
evaluation of patients’ intraocular pressure (IOP).3 Ultrasound
pachymetry (UP) is the most commonly used method to mea-
sure CoT. Although UP is accurate, easy to use, and relatively
inexpensive, an invasive procedure necessitates a cooperative
patient and use of anesthetic eye drops, and it may also be a
source of infection.4 An alternative way of measuring CoT is
by noncontact imaging techniques. One such method is optical
coherence tomography (OCT), which is similar to ultrasonog-
raphy imaging but uses light instead of acoustic waves. Two-
dimensional cross-sectional microscopic images of tissue are
created by OCT from multiple scans of backscatter light versus
depth.5–9 Another approach to CoT measurement is possible by
the use of a rotating Scheimpflug camera, producing a 3-D scan
of the anterior eye segment.10,11 The use of a specular micro-
scope to photograph and examine human endothelial cells is
also possible in CoT evaluation. This method involves applana-
tion of the cornea with a dipping cone mounted on the
objective.12–14 An additional noncontact way to measure CoT
is by optical low-coherence reflectometry (OLCR). This allows
measurement of the amplitude and relative phase of back-
scattered or reflected light, although the presence of high fre-
quency noise affects the measurements.15 OLCR consists of a
Michelson optical interferometer, a light source, a beam splitter,
and a light detector.16 Noncontact methods do not require topical
anesthesia and the procedures are relatively simple; however, the

results differ substantially from those of UP17–21 and the reduced
precision of CoT measurement could also affect IOP evaluation.

To measure IOP, opthalmologists often use applanation
tonometers. Various studies show that the precision of applana-
tion tonometers depends on CoT.22–27 Normally, thinner corneas
lead to lower IOP readings and thicker corneas to higher
ones.3 Most of the current IOP measuring devices, such as the
Goldmann applanation tonometer (GAT), the gold standard in
IOP examination, enable the reading of IOP but lack the ability
to measure CoT simultaneously, and have the additional draw-
back in needing two different devices to measure CoT and IOP.
Combined measuring devices, such as noncontact tonometers
that measure both IOP and CoT, have a lower precision level
than that obtained by GAT.28

The current work presents machine-learning (ML) networks
able to learn and classify the laser-based secondary speckle
patterns (SSP) reflected from the tissues. The method allows
evaluation of peripheral CoTwith high accuracy and faster than
obtainable by traditional methods. Recently, we used reflected
SSP technology for semicontinuous noninvasive IOP measure-
ment.29 It was noted that the measurement of corneal or scleral
thickness is required to introduce corrections for noncontact IOP
measurements. In the current research, CoT was measured for
the first time using a novel technique based on speckle tracking
and processing of information by ML algorithms. In this
research, we combined CoT and IOP measurements on the same
device using speckle-based technology. It allows including CoT
for correction and accurate semicontinuous, noninvasive meas-
urement of IOP.

2 Theory

2.1 Background of the Proposed Technology

The proposed technology contains further development for
IOP evaluation, which is based on the tracking of tissue back
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reflected speckle patterns. A laser beam illuminates the tissue
surface and the back scattered light is captured by a fast camera.
When wavefronts are back reflected from a rough surface and
are summed up on the detector plane, a random intensity pattern
appears due to the interference phenomenon. Those patterns are
known as secondary or subjective speckles. In our experiment,
the diverse SSPs reflected from the series of phantoms having
different thicknesses were captured by a fast imaging camera.

The underlying principle of the proposed method is that the
tilting movement can be detect using only a laser and a defo-
cused fast camera in order to transform this movement into a
transversal shift of the speckle patterns.30,31 By doing so, the
tissue’s vibrations cause the speckle patterns to shift in time,
with the shift being proportional to the extent of tilting occurring
in the illuminated surface.

The camera’s requirement for focal length F is30

EQ-TARGET;temp:intralink-;e001;63;576F ¼ KΔxZ3D
Z2λ

; (1)

where Δx is the pixel size in the detector, λ is the laser wave-
length, Z2 is the distance between the illuminated surface and
the secondary speckle (due to defocusing), Z3 is the distance
between the secondary speckle and the imaging module, D is
the diameter of the laser spot, and K is the minimum number
of pixels, in which it is assumed that every speckle in this plane
will be seen.

The far-field approximation needs to be kept by Z2:

EQ-TARGET;temp:intralink-;e002;63;445Z2 >
D2

4λ
: (2)

The assumption behind our technique is that increase of tis-
sue thickness, contributes the light scattering from an object, and
consequently causes reduction of the average speckle size throw
the image (see Fig. 1 for illustration). Furthermore, the overall
speckle image undergoes several changes. The ML algorithms
can find those features.

The reason that the size of the defocused speckles, being col-
lected by the camera, depends on the amount of scattering of
the inspected medium, is related to the fact that larger scattering
coefficients increase the average path of light (diffusion of light)
and thus generate on the surface of the scattering medium a
larger spot of diffused light. In the far-field plane (defocused
speckles), the spot of light on the surface of the medium sets

the size of the collected speckles (larger spot yields smaller
defocused speckles):

EQ-TARGET;temp:intralink-;e003;326;730δs ¼ λZ2

D
: (3)

Thus the size of the defocused speckles is inversely dependent
on the size of the diffused spot of light generated on the surface
of the scattering medium.

This assumption is also supported in the scientific litera-
ture,32,33 for instance by the model presented in Ref. 32 where
the scattering coefficient of the medium sets an effective loca-
tion of a master and slave light sources that properly fulfill the
light diffusion equation where the position of the master source
from the surface of the scattering medium is set by

EQ-TARGET;temp:intralink-;e004;326;592Za ¼
1

μsð1 − gÞ (4)

and of the position of the slave source is set by

EQ-TARGET;temp:intralink-;e005;326;539Z 0
a ¼

ð1∕μsÞ2
Za

ð1 − ηÞ; (5)

where

EQ-TARGET;temp:intralink-;e006;326;484η ¼ ½g · expð1 − gÞ�1∕n; (6)

g is the scattering anisotropy of the inspected medium, μs is the
scattering coefficient, and n is an open parameter depending on
the modeling as presented in Ref. 32. So the distance of the
effective light source depends on the scattering properties of the
inspected medium. This means that the size of the speckles
varies since their dimensions depend on the effective distance
as presented in Eq. (3).

This assumption of the dependence between the speckle size
and the amount of scattering is also experimentally supported
by Ref. 33 (relevant measurements are presented in Fig. S6 of
the reference).

2.2 Speckle Image Transformation Tracking

The variation in speckle pattern images captured by fast camera,
being related to the illuminated surface structure or thickness,
can be analyzed by several methods, including cross-correlation
or ML algorithms, as described below.

2.2.1 Cross correlation

The cross-correlation method was used to calculate correlation
across the different axes of the image, given that two speckle
pattern images differ only by an unknown shift. The cross-
correlation function can be used to determine the image shift
along the same axis. When the images match, the value of the
cross-correlation function is maximized.

Autocorrelation is the cross correlation of a signal with itself.
In order to calculate the average feature size, a normalized
autocorrelation is defined34

EQ-TARGET;temp:intralink-;e007;326;128A ¼
R∞
−∞ IðxÞIðx − uÞdx
R
∞
−∞ ½IðxÞ�2dx ≅

P
M
i¼1 IðxiÞIðxi − uÞ
P

M
i¼1 ½IðxiÞ�2

; (7)

where I represent the speckle intensity and u is the dis-
placement.Fig. 1 Illustration of the proposed technique.
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The width of the autocorrelation peak under A ¼ 0.5 was
found to be related to the average speckle size (in pixels).34

We tried cross correlation along the X axis for CoT partition
and identified a correlation of 4 to 6 pixels only, which was
found to be insufficient for successful CoT separation.

2.2.2 Machine-learning algorithms

ML35 refers to computer systems used to effectively perform a
given task without using specific instructions while relying only
on captured data (which in our case are the speckle image). ML
algorithms create a mathematical model of sample data, known
as “training data,” in order to make predictions or decisions on
other types of data without being explicitly programmed to per-
form the assignment. We used two ML network architectures to
recognize different CoT variations.

Convolution neural network with classification/regression
layer architecture. For the first time, a convolution neural
network (CNN)36 with classification/regression architecture
was used to analyze nonlinear image features and estab-
lish an accurate predictor based on CNN training using SSP
images.

The functions described below were applied in the network.

Rectified linear units.

Rectified linear units (ReLU) were applied as nonlinear func-
tions for network training. These grant flexibility during training
and show a good fit to image data. Activation is simply defined
as threshold at zero.

Fully connected layer.

The fully connected layer function is applied at the end of
the network before classification to reduce the output size to
the number of classifications while preserving all the neurons
data.37 It is the most accepted layer type for common neural net-
works: neurons between two adjacent layers are fully connected
pairwise, yet no connection exists in a single layer.

Softmax layer.

The Softmax function takes an un-normalized vector and
normalizes it into a probability distribution. In neural networks,
it is employed to map un-normalized output to a probability
distribution over a predicted output class.

ML methods were used to process and classify speckle
pattern images with a goal of determining the object thickness.
The CNN architecture used can be seen in Fig. 2.

3 Materials and Methods

3.1 Experimental Setup

A diagram of the experimental setup for phantoms having tis-
sue-like properties is presented in Fig. 3.

The system contains a laser and a fast camera for monitoring
SSP reflected back from the object. The camera’s focal length
was 55 mm, with an F number of 2.8, and the illuminating beam
was 3-mm in diameter. In the tissue-like phantoms a HJ 532-nm
green laser was used for illumination and the speckle patterns
created were recorded by a PixeLINK high-sampling-rate digital
camera. The camera was positioned 35 cm away from the tested
object (phantoms/human eye) and has no position constraints
due to the wide angle of speckle diffraction. The illumination
beam was directed at the center of the liquid phantom, placed
in a Petri dish. For testing human eyes, a JDS Uniphase CW
1550 nm WDM DFB laser was positioned directly opposite
the eyeball at distance of 32 cm. The laser beam was fixed at
a selected location on the cornea. The power of the infrared laser
was limited to the safety range (750 μW) approved by European
Standard EN 60825-1. The speckle patterns reflected back
from the cornea were captured using an EHD Imaging InGaAs
IK1112 digital camera.

The tested objects were illuminated for 3 s and the camera
captured the speckle images with a frequency of 200 frames per
second. A total of 600 random speckle images were captured
for each CoT that was tested in order to have a representative
database of pictures for postprocessing analysis. However,
the duration of illumination and the number of images couldFig. 2 Schematic CNN architecture scheme.

Fig. 3 Experimental setup for remote testing of tissue-like phantoms.
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be reduced without affecting the accuracy of measurement.
Increasing the camera frame rate will reduce the measurement
time dramatically.

3.2 Liquid Phantom Preparation

The current work assumes that tissue-like phantoms (with the
same scattering coefficient) having different thicknesses could
be identified by analyzing SSP reflected from an object illumi-
nated by a laser beam.

At the first stage, we tried to prove that our ML network has a
stable network architecture that can detect tissue-like phantom
with different thicknesses.

It is well established that the phantoms and human cornea
can differ in their optical properties, but if we have high accu-
racy throughout our ML test, we may conclude that this tool is
suitable for estimation of CoT in vivo, which was proved later
experimentally.

The technique was examined with different coherent light
wavelengths, exposure times, and resolutions to determine
which parameters influence the measurement precision.
Liquid phantoms with different thicknesses were prepared
and placed in a Petri dish (35-mm diameter) to simulate a tissue.
The phantoms were prepared using varying concentrations
[8% for 532 nm (Ref. 38) and 1.5% for 650 nm (Ref. 39)]
of Intralipid (IL) (Lipofundin MCT/LCT 20%, B. Braun
Melsungen AG, Germany), used as a scattering component.
The IL concentration was calculated according to Cubeddu
et al.40 Seventeen phantoms having thicknesses from 0.4 to
0.8 mm, with 0.025-mm increments, were created and the
Petri dish was measured as a reference. The selected thickness
range covers the entire CoT variation of the human eye. Three
repetitions were conducted for each wavelength, exposure time,
and image resolution. Six hundred frames were taken as a data-
base for our ML algorithm. Finally, the results of the experiment

were analyzed and compared for different resolutions, cases,
wavelengths, and network architectures.

The experiments showed that the wavelength and pixel res-
olution have a diminutive effect on the phantom thickness (PhT)
measurement, compared with intensity and speckle pattern size
and variation having significant influence on the results.

The experimental setup structure is presented in Table 1.
Different wavelengths, exposure times, and resolutions were
examined on different PhTs, and the mean absolute error was
evaluated.

In order to show that our network is reliable and has good
generalization to predict CoT, we let the network forecast sev-
eral similar tests combined together. The predicted results are
shown in Table 2.

3.3 Human Eye Measurements

Measurements of CoT were performed in the Bar-Ilan Opto-
metry Department. The experimental protocol was approved by
the internal board of ethics committee of Bar-Ilan University.
The applied laser system has a laser safety certificate for bio-
medical measurements on human eyes.

Table 1 Tissue like phantoms experimental setup and measurement error.

Test
no.

Illumination
wavelength (nm)

PhT
range (μm)

Thickness
increment (μm)

Exposure
time (ms)

Resolution
(pixel)

Mean abs. measurement
error (μm)

1 532 450 to 800 50 0.35 128 × 128 0

2 400 to 775 25 0.35 32 × 32 7.55

3 400 to 800 25 0.6 64 × 64 9.98

4 400 to 800 25 0.6 64 × 64 10.64

5 400 to 800 25 0.2 32 × 32 12.75

6 400 to 800 25 0.2 32 × 32 13.9

7 400 to 800 25 0.2 32 × 32 15.07

8 450 to 800 50 0.35 32 × 32 18.75

9 650 400 to 800 25 0.6 64 × 64 18.28

10 400 to 800 25 0.6 64 × 64 20.07

11 400 to 800 25 0.2 32 × 32 20.69

12 400 to 800 25 0.2 32 × 32 25.19

Table 2 Combined experiments setup summary.

Test
number

Combined experiments
(from Table 1)

Mean abs. measurement
error (μm)

1 3 to 4 13.52

2 5 to 7 19.09

3 9 to 10 25.96

4 11 to 12 26.46
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3.3.1 Reference eye cornea measurement by pachymetry

Pachymetry measurements of CoT were performed by a quali-
fied technician with a view to obtaining reference data. Our ML
methods were later compared with the pachymetry results in
order to evaluate the accuracy of the speckle-based CoT mea-
surement under eye safe laser illumination. The device used for
the measurements was TOMEY TMS-5. The device accuracy41

according to the specification is 20 μm by the spherical accuracy
factor.

10 eyes on subjects aged 23 to 72 were tested for CoTassess-
ment. The left and right eye in each individual was tested three
times and the median result was taken into account.

The CoT in the center and nasal side of the eye was analyzed
using standard pachymetry equipment, as presented in Fig. 4.

3.3.2 In vivo human eye measurements

The 10 human eyes tested for CoT evaluation by pachymetry
were also tested by our speckle-based method. The monitoring
device was positioned at a distance of 32 cm from the eye.
A diagram of the experimental setup for the measurement is
presented in Fig. 5.

As shown in the previous phantom experiments (Sec. 3.2),
the method has very low wavelength dependence and there-
fore the tested eyes were illuminated by a JDS Uniphase
CW 1550 nm WDM DFB eye safe laser. An EHD Imaging
InGaAs IK1112 digital camera in defocused mode was used
to capture reflections from the cornea. Focusing was performed
on a focal plane that fulfilled the far-field conditions of diffrac-
tion with respect to the reflecting surface, which in the current
case was the nasal side of the eye at the cornea-sclera limit. The
pupil of the eye absorbs most of the energy so we could not test
the entire cornea surface due to safety regulations limiting laser
power dispassion to be below 1 mW.

Each frame of the camera’s output represents an SSP. The
speckle patterns were analyzed with our ML algorithm using
MATLAB (TheMathWorks Inc., Massachusetts) to evaluate CoT.

The results were compared with those of the pachymetry
measurements.

4 Results

4.1 Corneal Thickness Evaluation by CNN with
Classification Layer

A classification network containing speckle patterns recording
was developed as a first step toward evaluation of the CoT
by ML.

Splitting videos captured from the illuminated phantoms
were subdivided into 18 categories in the range of 400 to
800 μm (covering the human CoT range) with increments of
25 μm. A green laser with a wavelength of 532 nm and 32 ×
32 pixels resolution camera were used for the experiment. All
combinations of the three described types of network architec-
ture and two training options were tested after being found
suitable for the task. We trained and evaluated CNNs using the
different architectures described above. CNN classifiers were
tested to generate probability scores. The network contained
the following sections: imageInputLayer, convolution2dLayer,
batchNormalizationLayer, ReLU layer, and maxPooling2d-
Layer, found to be the best for training (Fig. 6).

The blue curve represents the training data fit, and the black
curve represents the test data fit. The result shows 70.83%

Fig. 4 Result of eye CoT measurement by pachymetry.

Fig. 5 Setup for measurement of corneal thick-CoT in the human eye.
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accuracy on test data (20% of data was used in the test). The
maximum classification error of the network on test data was
75 μm, and the mean absolute error along the entire prediction
vector was 8.125 μm.

We then evaluated the confusion matrix of test labels in com-
parison with the predictions on test data of our network. The
results show a strong true label prediction match over different
classes (strong confusion matrix diagonal), indicating good
classification results of the test data.

As a result of our high-quality developed network, a very low
absolute mean error was obtained on the test data—below
10 μm, matching the current standard equipment error.

4.2 Corneal Thickness Evaluation by CNN with
Regression Layer

To analyze the nonlinear image features and to establish the
most accurate predictor based on CNN network architecture,
the regression network was applied. The regression layer could
find the best fit to the nonlinear data while training. The exper-
imental data were collected in a tensor and vector containing
matching labels that describe the origin of the data. The tensor
was constructed from the different videos recorded for different
CoTs with one color channel (gray level image). The data were
shuffled randomly so that the network would not “desire”
obtaining one thickness from the others. The experimental data
were split: 80% for training and 20% for test/validation purposes
to examine if the CNN model with a total of 2160 random
speckle pattern images were predicted on the test, which makes
the prediction very reliable.

The images ware normalized to the range (0, 1) for fast and
accurate training. Normalization helps the network to train bet-
ter on different features with a different scale of values because
the steps are constant across the training on normalized values.
The data were uniformly distributed across the training data after
shuffling randomly. The image input was constructed to have
32 × 32 pixels with one color channel (the speckle is gray
level-based because the laser is in one wavelength only).

The following network architecture was used for an input
gray image of 128 × 128 pixels.

1. Five convolution layers were used for the network
with filters of size 3 × 3 (pixels) convolving over the
image to capture small features.

2. After each convolution layer, a batch normalization
layer was used to speed up the training process (as
explained regarding the gradient).

3. The ReLU nonlinear function was used to learn the
nonlinear features of the image and obtain the best fit
of data.

4. The network size was reduced by max pooling, which
takes a 2 × 2 pixels window from the image and aver-
ages the pixels, decreasing the network by a factor of
2 in each dimension.

5. A fully connected layer was used to connect all output
neurons from the previous layer to one output and
attach it to the regression layer, which is optimized to
reduce the root-mean-square error (RMSE) of the net-
work by optimizing the network weights across the
training data.

The optimizer used for the regression layer was stochastic
gradient descent and the network was trained for 30 epochs,
with an initial learning rate of 1 × 10−3 and a learning rate drop
factor of 0.1 after 20 epochs.

The validation data were tested along the process and showed
a small training-test gap, reflecting a low generalization error in
the model. The training results with regression are presented
in Fig. 7.

The training results of the regression network show a fit error
as low as 0.04, with a low generalization gap between training
and test results, indicating a high-quality network. The mean
absolute prediction error obtained from the test results (20%
of data, 2160 images) after 30 epochs was 24.740 μm, with an
RMSE of 0.04.

The test data accuracy for different threshold values is pre-
sented in Fig. 8.

In 99.21% of the cases, the network predicts the correct value
∓100 μm absolute error from the real thickness of the tested
cornea. This shows very high accuracy with the 2160 images
tested after network training. The mean predictor error is only
24.74 μm and this can be improved by higher division of the
CoT range in the experiment.

To make sure that the network is reliable and has good gen-
eralization of CoT, we predicted the data from an additional

Fig. 6 Accuracy of network versus iteration while training.
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experiment, in which the network had not been trained. This
means that the network was trained in the first data set and tested
in the additional data set obtained separately. The results are
presented in Table 3.

Table 3 shows high-accuracy close to the original test data,
low RMSE fit error, and good mean prediction error on test
results when using the network on new experimental data. This
demonstrates good generalization of the network, with reliabil-
ity for future experiments and predictions.

4.3 Measurement of Human Eye Corneal Thickness

4.3.1 Pachymetry eye thickness measurements

We used pachymetry as reference measurements in order to
compare the results with the speckle-based technique. The eye
thickness measurement was repeated three times and the mean
value, variance, and median were extracted. The test results for
the 10 eyes (nasal side) are presented in Table 4.

We used pachymetry as a reference to our measurements
while comparing the results with our speckle-based technique.
The center of the cornea has higher absorption than the nasal
side of the eye and we could not use a laser safe tool to test the
center of the cornea. Thus we used only the nasal side of the
subject’s eye. The eye thickness measurement was repeated
three times and the mean value, variance, and median were
extracted. The test results for 10 eyes (nasal side) are presented
in Table 4.

Fig. 7 Training results of phantoms regression network. Blue: training data fit. Black: test data fit.

Fig. 8 Test data accuracy as a function of corneal thick-CoT
threshold.

Table 3 Results of training in additional data set.

Experiment
Absolute

mean error (μm) RMSE
Test

accuracy (%)

1 22.68 0.037 88.19

2 26.13 0.043 87.08

Table 4 CoT pachymetry measurements on the 10 human eyes, μm.
Each eye measured three times and the mean value, variance, and
median were calculated.

Eye
no.

Measure-
ment 1

Measure-
ment 2

Measure-
ment 3

Mean
value Variance Median

1 691 689 687 689 4 689

2 689 708 687 694.67 134.33 689

3 721 732 723 725.33 34.33 723

4 709 710 719 712.67 30.33 710

5 737 696 716 716.33 420.33 716

6 732 691 736 719.67 620.33 732

7 748 745 736 743 39 745

8 752 741 747 746.67 30.33 747

9 658 702 657 672.33 660.33 658

10 658 657 654 656.33 4.33 657
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Table 4 shows that the pachymetry device has a variance of
117.98 μm, with a low error rate of 15.5 μm (mean error of
measurement between the minimum and maximum values from
the three measurements conducted). This error can occur due to
the human factor in measuring the CoT or due to the equipment
itself, both being critical factors in the measurement, with no
way to distinguish between the errors. The mean and median
are equally good in estimating the experimental error.

4.3.2 In vivo speckle-based corneal thickness testing
with machine-learning data processing

All subjects tested by the pachymetry method were tested with
the speckle-based method and ML algorithm. The secondary
speckle images were recorded using the setup as explained.
In order to neglect eye motion factor, training was conducted
on the delta between consecutive images. The delta also helps
to focus only on the speckle pattern inside the image and elimi-
nate any other constant objects that can affect the training proc-
ess. Training only on the speckle pattern without the background
prevents the network from converging into the object back-
ground instead of the speckle pattern in which we are interested.

We took five eyes as training data with an equal number of
images (600 frames for each subject). An equal distribution of
training data along the different CoTs ensures equal training for
each CoT without preferring one thickness over others.

The training network results are presented in Fig. 9, showing
the RMSE fit of the network while training versus the number
of iterations after 10 epochs of training on the entire dataset.
A low RMSE gives a better fit for data.

The optimized RMSE value of 0.031 was found after 10
epochs of training, and the results of training and test data were
good.

In order to test the quality of our model, a second test was
performed, in which a prediction was made on two new eyes that
had not been used for training (which the network was not famil-
iar with). Those eyes were tested with the same network archi-
tecture trained in the previous test. For reference purposes, the
CoT was evaluated by pachymetry, giving values of 716 and
719 nm. The testing part contained 1200 images with different
random speckle patterns. Considering the generalization gap
and the quality of prediction, the results show high accuracy

of the method. The result showed the accuracy of the network
along all test images while using different permissible thresh-
olds of the allowed error. For example, if the threshold is set
to 50 μm and the regression network predicts a CoT with a
�50-μm error, it is considered a good prediction and anything
above is considered a false prediction. If 50% of the test data is
below this threshold, the prediction accuracy is 50%. For a
threshold of 75 μm, the accuracy is already above 95% of
data inside this boundary. For a 100-μm threshold, we achieved
100% accuracy for all our data. A summary of the regression
network on human eyes is presented in Table 5.

A comparison with known measurement tools such as OLCR,
UP, specular microscopy (SM), and Pentacam (Scheimpflug
method) can be seen in Table 6.

The time of our speckle-based measurement with ML was
1∕200 s per frame (it can be reduced dramatically) and shows
a good fit for TOMEY TMS-5. We found a mean prediction
absolute difference of 26 μm with a small ML eye database
as described, and the device accuracy of TOMEY was found
to be 20 μm.

Thus it can be assumed that the total true network error can
be somewhere around 46 μm (measurement error of 26 μm
at most, depending on the 20-μm optical lab accuracy as
described).

To conclude, we developed a very accurate measurement tool
for CoT estimation based on the ML network.

5 Conclusions
CoT measurement is an important factor for accurate evaluation
of IOP. A technique using a recording of SSPs and evaluation by
a regression network based on CNN architecture was introduced
in order to estimate CoTon the scleral border. The technique was

Fig. 9 Training results of human eyes regression network. Blue line: training data. Black line: validation
data.

Table 5 Validation results of network regression on human eyes.

Test
number

Absolute mean
error (μm)

RMSE (root mean
squared error)

Accuracy for 50 nm
threshold error (%)

1 27.42 0.045 89.26

2 26.10 0.048 84.82
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also shown to apply successfully on human eye as an example of
biological tissue. It was found that CoT evaluation could be
treated as a classification problem. The different classes have
different features as showed by our ML network and by the used
scanning filters. The problem of CoT estimation can also be
treated as a regression problem, giving accurate estimation.
The ML-based method was demonstrated to be reliable in terms
of accuracy (26 μm of mean fit error) being on the level of
pachymetry precision. The measurement is simple and fast, with
the test taking only a few seconds. The testing period can be
shortened by selecting a camera with higher frequency. It was
shown that speckle-based measurement of IOP and CoT could
be done simultaneously on the same device, whereas the CoT
value could be used as a correction factor for IOP evaluation.
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