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Abstract. Texture analysis for tissue characterization is a current area
of optical coherence tomography �OCT� research. We discuss some of
the differences between OCT systems and the effects those differences
have on the resulting images and subsequent image analysis. In addi-
tion, as an example, two algorithms for the automatic recognition of
bladder cancer are compared: one that was developed on a single
system with no consideration for system differences, and one that was
developed to address the issues associated with system differences.
The first algorithm had a sensitivity of 73% and specificity of 69%
when tested using leave-one-out cross-validation on data taken from a
single system. When tested on images from another system with a
different central wavelength, however, the method classified all im-
ages as cancerous regardless of the true pathology. By contrast, with
the use of wavelet analysis and the removal of system-dependent fea-
tures, the second algorithm reported sensitivity and specificity values
of 87 and 58%, respectively, when trained on images taken with one
imaging system and tested on images taken with another. © 2009 Society
of Photo-Optical Instrumentation Engineers. �DOI: 10.1117/1.3171943�
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Introduction

ptical coherence tomography �OCT� is an emerging imaging
odality that provides higher resolution images than ultra-

ound, but is limited in its application due to its penetration
epth of only 1–2 mm in biological tissue.1 For certain ap-
lications, however, such as imaging of the retina or analysis
f epithelial tissues, OCT is an ideal imaging modality. To
ate, OCT has gained acceptance in the area of retinal imag-
ng and has become a valuable tool in the diagnosis and moni-
oring of glaucoma.2–5 OCT is being studied for use in: the
ecognition of intravascular plaque,6–8 the recognition of can-
er or pre-cancer in a number of organ systems,9–12 and a
umber of other medical fields.13–18

Many studies have applied image analysis techniques to
CT images to automatically characterize the imaged tissue

n some manner. In the case of retinal imaging, recognition of
he layers of the retina and measurement of the thicknesses of
hose layers plays a key role in diagnosis.2 In the case of
maging for the recognition of cancer, texture analysis has
een studied as a means of recognizing differences between
ancerous and noncancerous tissue.10–12 This is due to its abil-
ty to place quantitative values on the amount of homogeneity
n an image or due to the effect the size and distribution of
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ax: �202� 994-0280; E-mail: apapas@aframedigital.com
ournal of Biomedical Optics 044010-
scatterers has on certain texture features.19 However, most of
these studies have been limited to a single imaging system,
which limits their applicability when used with other OCT
systems.

In this paper, we discuss some of the differences between
OCT imaging systems and the effect these differences have on
the resulting images and on algorithms developed to classify
those images. In addition, some methods are introduced to
compensate for system differences, including the use of tex-
ture analysis on the approximation and detail matrices created
through wavelet analysis. Finally, two algorithms to distin-
guish images of cancerous bladder tissue from images of non-
cancerous bladder tissue are compared for their ability to de-
tect cancer in images taken with two very different OCT
imaging systems. One of the algorithms was developed with-
out concern for imaging system differences while the other
was developed specifically to address those issues.

2 Background
2.1 OCT
OCT is an imaging modality similar to ultrasound that uses
partially coherent near-infrared light instead of sound to cre-
ate images of subsurface structures. The origin of the received
backscattered light is detected with interferometry; thus, a
map of reflectivity versus optical depth and lateral position

1083-3668/2009/14�4�/044010/8/$25.00 © 2009 SPIE
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an be created. The core of the imaging system is a Michelson
nterferometer. The light from the optical source is split into
wo paths. One of the paths, the reference arm, consists of a
elay line that varies the path length to create the depth infor-
ation of the image. The other path contains the scanning

rm, which sweeps the beam across the sample to obtain the
ateral image information. When the path lengths of the light
n each of the two arms are equal, they add constructively at
he detector. These signals are then processed and used as the
ndividual axial lines for the OCT image.20

The axial and lateral resolutions of an OCT imaging sys-
em are decoupled. The lateral resolution is determined by the
ptics in the scanning arm, and the axial resolution is deter-
ined by the coherence length of the light source.21 The co-

erence length is inversely proportional to the spectral band-
idth of the light source; thus, for smaller coherence lengths,

arger bandwidths are needed. Depending on the bandwidth,
xial resolutions as low as 4 �m can be achieved, which is up
o 25 times higher than the resolution of high-frequency
ltrasound.22 When imaging, the axial and lateral resolutions
re usually kept similar to maintain distance relationships in
he image. However, for the lateral resolution to match the
xial resolution when it drops below 10 �m, the focal length
f the lens would need to be so small that the depth of focus
f the system would drop. Consequently, most current
atheter-based systems have axial resolutions between 10 and
0 �m.22 The actual axial resolution depends on the medium
eing imaged, but is proportional to the coherence length.

Tissue penetration depth in OCT is also a function of the
avelength of light used. For optical energy, tissue preferen-

ially absorbs some wavelengths of light, while having very
ittle effect on others. For instance, in the near-infrared range
rom 800 to 1300 nm, there is very little absorption in
issue.23 For wavelengths that are not absorbed, scattering,
hich decreases at greater wavelengths, is the primary limi-

ation of penetration depth. For this reason, OCT imaging has
een investigated at several near-infrared wavelengths �830,
80, 1060, and 1300 nm�, depending on whether the empha-
is is on resolution or tissue penetration.1 At smaller wave-
engths, resolution is higher, while at greater wavelengths tis-
ue penetration is increased.

.2 OCT Image Analysis
he first OCT system was approved by the Food and Drug
dministration for use in ophthalmology in 1993,24 and the
rst commercial OCT system was introduced into the clinic in
996.24 Since then, many groups have developed algorithms
o automatically detect the layers of the retina.2–5 The thick-
ess of the retina, which can be determined from OCT im-
ges, can help diagnose certain diseases and lead to more
ppropriate treatment.2 Similarly, analysis of the ganglion
ells and axons in the retinal nerve fiber layer �RNFL�, which
an be visualized using OCT, can help determine the progress
f glaucoma.2

More recently, differences between OCT systems and the
ffect those differences have on measurements, such as the
hickness of the RNFL, has become an active area of study.
ne of the first groups to make such comparisons was Bourne

t al.,25 who imaged 139 subjects with two imaging systems
nd then compared the resulting RNFL thickness measure-
ournal of Biomedical Optics 044010-
ments. One of the systems generally produced thicker mea-
surements; however, a correction factor was determined that,
when applied, brought the measurements within 10 �m of
each other for 75% of the patients. This difference is still large
enough, however, that Bourne et al.25 suggest that the mea-
surements taken by these systems should be compared with
caution. In a similar study, Sehi et al.26 compared the mea-
surements obtained by two different OCT systems when mea-
suring not only the RNFL, but also the optic disk topography
and central foveal thickness. As with the Bourne study, there
were significant differences between measurements taken
with the two systems; although in this study, no attempt was
made to compensate for these differences. A warning was
simply given that when comparing values between clinics or
systems, system differences should be taken into account.

Research in the area of OCT image analysis is not limited
to retinal measurements. OCT is actively being studied for the
characterization of intravascular plaque6,27 as well as for the
recognition of cancer. Gossage and Tkaczyk28 may have been
the first to suggest that texture analysis can be used to analyze
OCT images in an attempt to classify different tissue types.
They were able to analyze the texture in OCT images to dif-
ferentiate between in vitro images of mouse skin �correct clas-
sification rate of 98.5%� and testicular fat �97.3%�, as well as
normal lung �88.6%� and abnormal lung �64.0%�. In a
follow-up study, Gossage et al.19 used texture analysis and
tissue phantoms to study the effect of the size and distribution
of scatterers on the speckle present in OCT images. The re-
sults indicated that the change in size and distribution of scat-
terers did have a statistically significant effect on certain tex-
ture features, such as entropy, local homogeneity, inertia, and
the low-frequency Fourier transform. In recent years, texture
analysis has been used by a number of researchers in efforts to
distinguish cancerous from noncancerous tissue. In two sepa-
rate studies, Qi et al.10,29 applied texture analysis along with
other image analysis techniques to OCT images of the esopha-
gus to diagnose dysplasia. The first study reported a sensitiv-
ity of 87% and a specificity of 69%, while the second study
reported a sensitivity of 82% and a specificity of 74%. Zysk
and Boppart created an algorithm using a combination of im-
age and texture analysis techniques to recognize breast
cancer.11 The results of the study indicated that the combined
algorithm had a tumor tissue sensitivity of 97% and a speci-
ficity of 68%. All these studies were carried out using data
from only one system.

Previously, we have applied texture analysis to OCT im-
ages of the bladder to recognize the layers of the bladder,30

and to differentiate cancerous from noncancerous tissue.12

The study to differentiate cancerous from noncancerous blad-
der tissue reported a sensitivity of 92% and a specificity of
62%, using data from a single system. Unfortunately, the fea-
tures selected turned out to be highly system dependent, and
the algorithm overtrained due to the limited data used for
algorithm development. It became apparent that for our algo-
rithm to be applicable to multiple systems without requiring
acquisition of training data on each new system, it needed to
be designed with system independence in mind, causing us to
begin considering methods of compensating for system differ-
ences. In addition, to avoid overtraining as we continued our
research, we reverted to a simpler algorithm that required use
of fewer features and would be influenced less by deviations
July/August 2009 � Vol. 14�4�2
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resent in the training data set. As more data become avail-
ble, it should be possible to return to more complex algo-
ithms capable of more reliable differentiation between tissue
lasses. The development of methods of accounting for sys-
em differences will not only allow developed algorithms to
e applicable to more than a single imaging system, it will
ake it possible to use data from multiple data sets, devel-

ped on different systems, to develop more robust and com-
lex algorithms.

Chen et al.31 conducted a study that used texture analysis
o evaluate the ability of two systems having different resolu-
ions to recognize Barrett’s esophagus. In vivo and in vitro
issues from the esophagus were analyzed with both imaging
ystems. One system had a center wavelength of 1310 nm
nd a resolution between 10 and 15 �m. The high-resolution
ystem had a center wavelength of 1260 nm and a resolution
f �5 �m. The goal of the study was to determine whether
he high-resolution system was able to improve the recogni-
ion of Barrett’s esophagus. The results indicated that the tex-
ure features calculated with the high-resolution system were
ble to better discriminate between normal tissue and Barrett’s
sophagus. The paper does not mention, however, if the im-
ges taken with one system could be successfully analyzed
sing the images taken with the other as the training set.

Because of the limited availability of clinical OCT data in
he area of cancer detection, recognition algorithms are being
eveloped on single, small data sets. The reality, however, is
hat to develop robust algorithms capable of analyzing data
rom different systems, developers need multiple data sets
rom many different studies taken with different systems. If
his is not the case, then the developed algorithms are likely to
e limited to use on the system for which they were devel-
ped or to require training data gathered on each new system.
o avoid having to acquire training data for every new sys-

em, we seek a method capable of compensating for system
ifferences.

.3 OCT System Differences
here are a few parameters of OCT systems that are apparent
hen differentiating between systems, including resolution

nd depth of penetration, which are dependent on the central
avelength of the light source used. Systems with smaller
avelengths have better resolution but less penetration depth.

Other system differences include the signal-to-noise ratio,
he range of intensity values, and the pixel size. The range of
ntensity values is often set at the time of imaging and may
ary slightly from use to use. The general range would be
ependent on the average intensity of the sample and refer-
nce beams as well as the analog-to-digital converter used in
he system. Likewise, the actual pixel size would be deter-

ined by probe and system parameters, but could be con-
rolled by the system software.

To compare data sets taken with different imaging systems,
r with different probes, we must compensate for these sys-
em differences. If the pixel size and intensity ranges are
nown, as they often are, then it would be possible to use
esizing and normalization techniques to account for some of
hose differences. Furthermore, because the OCT signal
trength decreases with depth, the penetration depth and the
ortion of the image analyzed will play a significant role on
ournal of Biomedical Optics 044010-
the results of any image analysis. This paper will address the
effects of system differences on OCT diagnosis algorithms,
using two algorithms designed for the recognition of bladder
cancer as an example.

2.4 Wavelets
An approach that could help reduce the effect of system pa-
rameters on texture features is the calculation of texture fea-
tures on the output of wavelet analysis. Wavelet analysis is
similar to Fourier analysis but uses waveforms of limited du-
ration and irregular form to describe a signal, instead of infi-
nitely long sine waves. Once the “mother wavelet” is selected,
it is shifted to provide temporal information, and scaled to
provide information at different scales. At each shifted loca-
tion, a window of the original signal is compared to the scaled
wavelet and a wavelet coefficient is calculated. After this
comparison is made across the input signal, a series of wave-
let coefficients is available for the given scale. The process
can be repeated at any number of scales.32

As with the discrete Fourier transform, a discrete wavelet
transform exists, that limits the wavelet analysis to scales and
positions that are powers of two. There can be at most log2N
stages of analysis if the input signal is N samples long. Each
stage, n, of the discrete wavelet transform has two parts. It
takes the input of the stage, convolves it with a low-pass filter,
and then down-samples the result by 2 to produce what are
called the approximation coefficients, An. It also takes the
input of the stage, convolves it with a high-pass filter, and
then downsamples the result by 2 to produce what are called
the detail coefficients, Dn. The original signal is the input to
the first stage, and the approximation coefficients of the pre-
vious stage are the inputs to all subsequent stages.32

Discrete wavelet analysis can be performed in two dimen-
sions, for analysis of images. On an input image of dimension
m by n, the output of the first stage would be an approxima-
tion matrix A1 of dimension m /2 by n /2, a horizontal detail
matrix H1 of dimension m /2 by n /2, a vertical detail matrix
V1 of dimension m /2 by n /2, and a diagonal detail matrix
D1 of dimension m /2 by n /2. The approximation matrix A1
would be the input to the second stage. A diagram of the
function of the discrete wavelet transform in two dimensions
is shown in Figure 1.32

Wavelet analysis is used often for image compression and
reconstruction, but can also be used to provide information
about an image at several scales.33 Texture analysis, such as
the calculation of co-occurrence features, can be carried out

An
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Fig. 1 Two-dimensional discrete wavelet transform.
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n the approximation or detail coefficients output from vari-
us levels of wavelet analysis.34

The application of wavelet analysis to OCT imaging has
een predominantly in the area of image denoising35–37 and
he results have been impressive. Adler et al.38 were able to
emonstrate an improvement in signal-to-noise ratio of
7 dB using a two-dimensional wavelet filter, while Pu-

anathasan and Bizheva39 report an improvement of �10 dB
n the image signal-to-noise ratio when using a denoising al-
orithm based on wavelet analysis.

Recently, wavelet analysis has been applied to OCT im-
ges for purposes other than image denoising. In 2005, Es-
ock et al.40 studied the possibility of using wavelet analysis
n OCT images of the human retina to help diagnose glau-
oma. During the study, 134 patients were imaged with OCT
nd the images analyzed. The second-level approximation co-
fficients and the Fourier transform of the second-level detail
oefficients were normalized and used as image features.
rincipal components analysis was used to reduce the number
f features, and linear discriminant analysis was used as a
lassifier. The algorithm was very successful, with an area
nder the receiver operating characteristic �AUC� of 0.947 for
he earliest stage of glaucoma, and increasing to 0.997 for the
ater stages. The AUC is a measure of overall discrimination
bility.41

Although a combination of wavelet and texture analysis
as not previously been applied to OCT images for the pur-
ose of detecting cancerous tissue, it has been applied to
ammograms by Wei et al.42 for the recognition of cancerous

reast tissue. The study used 672 regions of interest extracted
rom mammograms and calculated co-occurrence features on
oth the original region and the first four approximation ma-
rices output by the wavelet analysis. When classifying the
egions as masses or normal tissue, the method yielded an
UC of 0.86.

When considering system differences, texture analysis on
he output of wavelet analysis may have advantages over tex-
ure analysis of images directly. The filtering of the data at
ach step serves to filter out noise, while analyzing the image
t courser scales reduces the effect of resolution differences.
urthermore, treating columns and rows separately allows di-
ectional properties present in the image to be emphasized or
eemphasized in the resulting matrices, which may help dif-
erentiate between tissue types.

Methods
s an example of the effect of system differences on texture

nalysis algorithms for OCT, two algorithms developed to
ecognize bladder cancer were developed and trained on a
ata set provided by the George Washington University Medi-
al Center �GWUMC� and tested on a data set provided by the
aylor College of Medicine. One algorithm, which shall be

eferred to as ALG1, was developed without concern for sys-
em differences, and the other, which shall be referred to as
LG2, took system differences into consideration.

.1 Dataset Description
oth the GWUMC and Baylor studies used OCT imaging

ystems manufactured by the Imalux Corporation, although
he central wavelength of the systems, the signal-to-noise ra-
ournal of Biomedical Optics 044010-
tios, the range of intensity values, and the pixel sizes were
different. During both studies, patients underwent a standard
cystoscopic examination. Visually suspect lesions, as well as
normal-appearing urothelial tissue, were photographed,
scanned with OCT, and biopsied. The scans, which generated
200�200–pixel images, were obtained by placing the end-
firing OCT probe on the desired site perpendicular to the wall
of the bladder. Biopsy specimens were preserved in formalin
for standard histopathologic analysis and served as the gold
standard for the study.

The GWUMC study included 196 images taken from 22
patients using an OCT imaging system with a 980-nm central
wavelength. Details of the original GWUMC study can be
found in Ref. 43. The Baylor study included 96 images taken
from 34 patients using an OCT imaging system with a
1310-nm central wavelength. Because systems with smaller
wavelengths have better resolution but less penetration depth,
the GWUMC system had better resolution, while the Baylor
system had increased penetration. Figure 2 shows example
images of healthy, dysplastic, and invasive bladder tissue
taken with each system.

GWU Normal

GWU Dysplasia

Baylor Normal

Baylor Dysplasia

GWU Invasive Baylor Invasive

Fig. 2 Example images of healthy, dysplastic, and invasive bladder
tissue from each data set.
July/August 2009 � Vol. 14�4�4
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.2 Preprocessing
istogram analysis was used to locate a threshold within each

mage that indicated the difference between areas having very
imited signal and areas representing the bladder. The thresh-
ld then was used to separate the portion of the image-
ontaining “background” from the portion to be analyzed. No
urther preprocessing was done on the images before they
ere analyzed for training or testing of ALG1.

Prior to being analyzed for training or testing of ALG2,
owever, the images were normalized, resized, and cropped.
he maximum and minimum intensity values for each data set
ere determined and used to normalize the intensity values
ver the range of 0–255. The image size is contained in the
eader of each image and was used to resize images. All
mages were resized to have a square pixel size of 12

12 �m. The width and depth of each pixel were adjusted to
e the same size so that the resulting images would be isotro-
ic. The value of 12 �m was selected as the width and depth
f a pixel because it was larger than the estimated pixel size
or all of the images. The largest estimated pixel size was the
idth associated with some of the Baylor images at
1.5 �m /pixel. Finally, the images were cropped to have a
ixel width divisible by eight and to have a height of
6 pixels �864 �m�. A depth of 864 �m was selected to
atch the system with the least penetration while maintaining
number of pixels that was divisible by eight. The images

eeded to have pixel dimensions divisible by eight to permit
hree levels of wavelet analysis.

.3 Texture Analysis
eventy-seven texture features, including Laws’s texture fea-

ures, histogram features, and co-occurrence features, were
alculated for the images. The histogram features were calcu-
ated using 8, 32, and 128 bins. The co-occurrence features
ere calculated using 8, 32, and 128 bins, and using a neigh-
or defined as one pixel to the right, as well as one pixel
own.

In an attempt to further reduce the effect of system differ-
nces on ALG2, we extracted additional texture features from
he approximation and detail matrices that resulted from three
evels of wavelet analysis using the Symlet fourth-order
avelet.44

To remove redundant features from the feature sets, we
xamined each set for correlation between features. Correla-
ion values for each feature pair were calculated and normal-
zed, and one feature removed from consideration if the cor-
elation value had an absolute value of �0.9. Of the 77
eatures under consideration for ALG1, removing the corre-
ated features left 22. Of the 1001 features under consider-
tion for ALG2, removing the correlated features left 325. To
llow comparison between features, the remaining features
ere normalized over the range of 0–255 before continuing
ith the analysis.

.4 Algorithm
he algorithms were designed to use discriminant analysis to
ompare the distance between the texture features for each
mage and the means of the texture features representing the
oncancerous and cancerous groups. The image would be de-
lared cancerous if the texture features were closer to the
ournal of Biomedical Optics 044010-
means for the cancerous group, and noncancerous if they were
closer to the mean for the noncancerous group. On the basis
of prior research indicating that images of normal and
dysplasia/carcinoma in situ tissue provide the best separation
between classes,12 normal images were used as representative
of the noncancerous group, and dysplasia and carcinoma in
situ �CIS� were used to represent the cancerous group. A more
complex algorithm using a treelike structure of comparisons
or more classes representing different pathologies would re-
quire more data to avoid overtraining.

It is known that, for finite sample sizes, there is an optimal
number of features; an increase results in performance
deterioration.45 As more features are used and the algorithm
becomes more tuned to the training data set, the algorithm
loses its generality or ability to classify a more diverse data
set. Consequently, it was necessary to select a subset of the
available texture features for use in each of the algorithms.

Prior to feature selection for ALG2, however, system-
dependent features were removed from consideration. The
trace of the ratio of between-class scatter SB to within-class
scatter SW �sctrace� was calculated for each feature using the
normal images from the GWUMC and Baylor data sets as the
two classes. The sctrace is a standard measure of the separa-
tion of two classes and is larger for classes that are well sepa-
rated and lower for classes that overlap. To ensure overlap of
the features from the two data sets, only features that had an
sctrace value of �0.2 were maintained for consideration dur-
ing feature selection of ALG2. The limit of 0.2 was selected
because when plotted it was possible to see differences be-
tween system clusters if the sctrace value was �0.2, but not
possible when the value was �0.2. Figure 3 shows an ex-
ample of the distribution of feature values for a set of features
with sctrace values �0.2 and for a set of features with sctrace
values �0.2. Only images with normal pathology were in-
cluded in the sctrace calculation to remove the effect of
greatly varying pathology on the values. It was assumed that
images of normal pathology would exhibit well-defined lay-
ers, as recognized by Feldchtein et al.,46 and have less image-
to-image structural variations than varying degrees and types
of abnormal pathology.
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Example Features for Healthy
Images with sctrace > 0.2
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Fig. 3 Relationship of trace value to system dependence: �a� The fea-
tures have sctrace values of �0.2, and the feature values for the two
systems are separated into two well-defined clusters. �b� The features
have sctrace values of �0.2 and the feature values for the two systems
are intermixed.
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For both ALG1 and ALG2, the sctrace of the texture fea-
ures of the normal and dysplasia/CIS images from the
WUMC data set was used to determine which subset of one,

wo, or three features would provide the largest separation
etween the groups of images. The subset with the highest
ctrace value was selected for use in the algorithm.

After selection of the features, normal and dysplasia/CIS
mages from the GWUMC data set were used as training data
o determine the mean vectors and covariance matrices for the
wo classes. Each of the images in the Baylor dataset was then
ested using discriminant analysis to classify the image as
ancerous or noncancerous.

Results
he features selected for use in ALG1 were:

1. The mean of the histogram using 32 bins.
2. The amount of energy along the diagonal calculated

sing a co-occurrence matrix with 32 bins and neighbor de-
ned as one pixel down.

3. The energy texture feature calculated using a co-
ccurrence matrix with 128 bins and neighbor defined as one
ixel down.

As mentioned previously, prior to feature selection for
LG2, all features that were determined to be system depen-
ent were removed from consideration. Interestingly, all of
he features calculated directly on the image were removed
rom consideration during this step. However, after this step,
nly about half the features calculated on the output of wave-
et analysis had been removed from consideration, leaving
12 features still in consideration. Furthermore, an unusually
arge portion of the remaining features, 32%, were Laws’s
exture features, whereas only 18% of all features were
aws’s texture features. The following features selected for
se in ALG2 were:

1. On the first-level wavelet vertical detail matrix, the
mount of energy along the diagonal calculated using a co-
ccurrence matrix with 128 bins and neighbor defined as one
ixel down.

2. On the second-level wavelet horizontal detail matrix,
he Laws’s edge-spot texture feature.

3. On the third-level wavelet vertical detail matrix, the
aws’s level-spot texture feature.

When the data acquired during the Baylor study were
ested on ALG1 using the GWUMC data as the training data,
ll of the test images, regardless of pathology were classified
s cancerous. In comparison, when ALG1 was tested on the
WUMC data set using leave-one-out cross-validation, the

esulting sensitivity was 73%, with a specificity of 69%. The
oor results noted when testing the Baylor images can be
irectly attributed to differences between the imaging systems
sed in the two studies. The features selected for use in ALG1
ere affected substantially by those differences and caused all
f the images to fall into the “cancer” category. Figure 4
hows the distribution of the texture features used in ALG1
or the two systems. The texture features are simply too dif-
erent from one another to allow the images from different
ata sets to be compared to one another.

When the data acquired during the Baylor study were
ested on ALG2 �which had taken system differences into con-
ideration� using the GWUMC data as the training data, the
ournal of Biomedical Optics 044010-
results indicated a sensitivity of 87% and a specificity of 58%.
Figure 5 shows the distribution of the texture features used in
ALG2 for the two systems. The texture features do not cluster
separately by system, but form one large cluster.

5 Discussion
Two algorithms were developed and trained on a set of im-
ages taken with one imaging system and then tested on a set
of images taken with another imaging system with very dif-
ferent characteristics. ALG1, which was developed ignoring
the existence of system differences, classified all images in
the testing set as “cancer” regardless of the true pathology.
When the distribution of the texture features used by the al-
gorithm was plotted, it became evident that the selected fea-
tures were highly dependent on the imaging system.

The ranges of intensity values for the two systems were
very different, affecting texture features calculated using his-
togram analysis or Laws’s method. Normalizing the images
using the intensity range evident in each data set improved the
correlation between some of the texture features for the two
systems, but was not sufficient to compensate for all of the
system differences. The pixel size used in each set of images
was also quite different, affecting features calculated using
co-occurrence matrices or Laws’s method. Resizing the im-
ages to have a standard square pixel size improved the corre-
lation between some of these texture features. Differences in
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he amount of depth penetration of the different systems were
artially accounted for by performing texture analysis only to
he penetration depth achieved by the system with the least
enetration.

Other system differences that need to be considered are the
ystem resolution and the signal-to-noise ratio of the system.
avelet analysis offers the ability to analyze images at differ-

nt scales and to filter those images to emphasize high- or
ow-frequency content in different directions. By evaluating
n image at a larger scale, the effects of resolution differences
ill be reduced, and by evaluating an image that has passed

hrough a low-pass filter, the effect of different signal-to-noise
atios will be reduced. Not only does wavelet analysis reduce
he effect of system differences, it offers another advantage. It
rovides the opportunity to evaluate an image that has been
ltered to emphasize horizontal or vertical structure, which in

he case of bladder cancer detection, is very useful due to the
ayered structure present in healthy bladder tissue and absent
n diseased tissue.

Finally, while various preprocessing techniques were
mplemented to reduce the effect of system differences, some
ifferences remained. It was therefore necessary to check for
ystem differences before feature selection. Texture features
hose values for normal images taken from both data sets did
ot form one cluster were not considered during feature se-
ection. All the texture features calculated on the images di-
ectly were removed from consideration, strengthening the ar-
ument that normalization and resizing alone are not
ufficient when creating system-independent algorithms. On
he other hand, approximately half the texture features calcu-
ated on the output of wavelet analysis passed the system
ifferences check, supporting the suggestion that use of wave-
et analysis helps circumvent problems caused by system dif-
erences. Of additional interest is the fact that Laws’s texture
eatures calculated on the output of wavelet analysis had a
arge representation in the set of features determined to be
ystem independent. The robustness of those texture features
n the face of system differences may be due to their structural
asis as compared to the statistical approach used with co-
ccurrence matrices and histogram analysis.

The algorithm was tested on two sets of data taken with
wo different imaging systems. To confirm the system inde-
endence of the algorithm, it would be necessary to test data
ets acquired with other systems. The results achieved indi-
ate that if system differences are accounted for during algo-
ithm development, it is possible to develop algorithms that
an be trained with data from one system and used success-
ully on images collected with a second.

Although the results of the second algorithm were promis-
ng and demonstrate system independence, the reliability of
he second algorithm needs to be improved for it to be clini-
ally useful. More research and data are necessary to allow
evelopment of a more complex algorithm, which by taking
nto account different cancer and noncancer pathologies
ould have the potential to be more accurate. The limited

mount of data currently available limits the complexity of
he algorithm.

The suggestions mentioned in this paper require that im-
ges be compared at both the poorest resolution and poorest
enetration depth considered. This, however, may diminish
he ability to develop algorithms that take advantage of supe-
ournal of Biomedical Optics 044010-
rior resolution or superior depth penetration. Superior reso-
lution may improve the ability to differentiate between patho-
logical differences close to the surface, such as the difference
between dysplasia and CIS, while superior depth penetration
will be required to grade an invasive tumor. It may, therefore,
be beneficial to develop algorithms that operate within certain
well-described limitations. The portability of an algorithm
may become another parameter to consider, just as one con-
siders whether higher resolution or increased penetration is
necessary.

6 Conclusion
For automated algorithms to be applicable to more than one
OCT system, steps must be taken during algorithm develop-
ment to account for system differences. Preprocessing steps to
address pixel size, image depth, and intensity range reduce the
effect of some system differences, but are not sufficient. It is
necessary to consider system differences during feature selec-
tion and remove all features from consideration that are still
affected by system differences after preprocessing. Unfortu-
nately, removing these features from a collection of features
calculated for an image will significantly reduce the selection
of features available for tissue characterization. The ability of
wavelet analysis to reduce the noise in images, consider im-
ages at different scales, and break images into horizontal and
vertical components, provides a number of additional repre-
sentations from which useful texture features can be calcu-
lated.

An algorithm was introduced that when developed and
trained on one system was able to successfully classify im-
ages taken with a second imaging system that had very dif-
ferent characteristics. The sensitivity when testing the images
taken with the second imaging system was 87% and the speci-
ficity 58%. The algorithm considered system differences
when preprocessing the images, considered texture features
calculated on the output of wavelet analysis, and excluded
features from consideration that were classified as system de-
pendent based on the trace of the ratio of the between-class
scatter to the within-class scatter for normal images taken
with the two imaging systems.
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