
2

L
r
b
t
q
t
m

q

w
i
s
C
d
fi

K

w
v
r
b
p
g

q

w
H
s
s
i

u
t
b
s
n
t
e
t
i
s
t

p

S

w
p
a
t

OE LETTERS
Multi-information incorpo-
ration approach to
kernel-based infrared target
model construction with
application to target
tracking
Jianguo Ling,a,b Erqi Liu,b Lei Yang,a and Jie Yanga

aShanghai Jiaotong University, Institute of Image
Processing and Pattern Recognition, No. 800 Dongchuan
Road, Shanghai, 200240, China
E-mail: lingjianguo76@sjtu.edu.cn
bInstitute of the Second Academy, China Aerospace
Science and Industry Corporation, Beijing, 100854, China

Abstract. We present an approach that incorporates multi-
information, including intensity value, spatial relation, and lo-
cal standard deviation information of the pixels in target re-
gion, into kernel density estimation for constructing the
kernel-based infrared �IR� target model. The incorporated in-
formation can complement each other for a target-tracking
task. This constructed target model is evaluated based on
the relative entropy of the two classes and is applied in a
mean shift tracking system for IR target tracking to verify the
effectiveness. © 2006 Society of Photo-Optical Instrumentation
Engineers.
�DOI: 10.1117/1.2388341�
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1 Introduction

Recently, kernel-based target-tracking methods have re-
ceived considerable attention in the computer vision
field.1–3 A key issue in the development of those methods is
the construction of a target model. Comaniciu et al. de-
signed the target model with an isotropic kernel.1 Yilmaz et
al. defined the target model by cascading two Epanechni-
kov kernels.2 Hager et al. constructed the target model with
multiple kernels of different tracking structures.3 IR images
are the thermal images that are extremely noisy due to ram-
pant systemic noise or color noise sources incurred by the
sensing instrument and the noise from the environment.4 In
most cases, the target region with a common tracker is
vaguely located because of the noise. A target model based
on the located target region is thus improperly computed.
This may cause the tracker to fail to capture the target
completely or even to lose the target in the successive
tracking process. Thus, it is required to identify a more
realistic target model of the IR target for the tracking task.
This letter aims to extend the current kernel-based target-
tracking method to achieve a robust tracking performance
with a well-designed target model.
r0091-3286/2006/$22.00 © 2006 SPIE
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et �xi�i=1¯n be the normalized pixel locations in the target
egion with center c in the current frame. The function
:R2→ �1. . .m� �m-bin histograms are used� associates to

he pixel at location xi the index b�xi� of its bin in the
uantized feature space. The probability of the feature �in-
ensity values are commonly used� u=1. . .m in the target
odel is computed as1

u = C�
i=1

n

k��xi − c

h
�2��	b�xi� − u
 , �1�

here � is the Kronecker delta function, C is the normal-
zation constant, k�•� is the common profile used in corre-
ponding feature domain, and h is the kernel bandwidth.
ascading two kernels is another way to estimate the kernel
ensity in the target region.2,5 In Ref. 5, the kernel is de-
ned as:

hs,hr
�x� =

C

hs
2hr

pks�� xs

hs
�2�kr�� xr

hr
�2� , �2�

here xs is the spatial part, xr is the range part of a feature
ector, ks�•� and kr�•� are the common profiles used in cor-
esponding domain, hs and hr are the employed kernel
andwidths, and p is the image vector dimension. Thus, the
robability of the feature u=1. . .m in the target model is
iven by

u =
C

hs
2hr

p�
i=1

n

ks�� xi
s − c

hs
�2�kr�� xi

r − v
hr

�2��	b�xi� − u
 , �3�

here c and v are the centers of the corresponding kernels.
ere ks�•� is used to define the spatial relation of the inten-

ity values through the Euclidean distance of its spatial po-
ition from the target center, and kr�•� is used as a weight-
ng factor in the intensity values histogram.

Equations �1� and �3�, do not pay much attention to the
neven distribution of the intensity values of the pixels in
he target region. Moreover, the target center and the kernel
andwidth, which are important parameters for kernel den-
ity estimation, are not clearly shown. Here we present a
ew method for designing a well-performing kernel-based
arget model. The final target model with the kernel density
stimate method incorporates intensity value, spatial rela-
ion, and local standard deviation information of the pixels
n the target region. Furthermore, the computed kernel den-
ity is more approximate to the true distribution of the in-
ensity values of the tracked target.

For an IR image, the local standard deviation of the
ixel xi can be computed as2

�xi� = � 1

�M� − 1 �
X�M

	I�xi� − I�X�
2
1/2

, �4�

here I�xi� and I�X� denote the gray values of pixel xi and
ixel X, respectively �pixel X is the pixel around pixel xi in
predefined window�, and �M� denotes number of pixels in

he neighborhood. Figure 1 shows the target region and

ough contour in the local standard deviation images are
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clearly emphasized, and this is an indication that we can
use the information to set the target center and the kernel
bandwidth. For a discrete 2-D local standard deviation im-
age, the zeroth moment can be defined as

M00 = �
i=1

rows

�
j=1

cols

S�i, j� , �5�

where rows and cols are the sizes of the analyzed target
region along different orientation, and S�i , j� is the local
standard deviation of a pixel at position �i , j�. The first mo-
ment is given by

M10 = �
i=1

rows

�
j=1

cols

iS�i, j� ,

M01 = �
i=1

rows

�
j=1

cols

jS�i, j� . �6�

Then the component of center c= �cx ,cy� of kernel ks�•�
is computed as

cx =
M10

M00
,

cy =
M01

M00
. �7�

In addition, center v of kernel kr�•� is defined as the quan-
tized intensity value at position �cx ,cy�. Zeroth-moment in-
formation is also used to set the search window size in Ref.
6. Illumined by this work, we set the kernel bandwidth
based on a function of the zeroth moment of the local stan-
dard deviation image. If the maximum local standard de-
viation value is denoted as �max in the target region of a

Table 1 Relative entropy values o

Information Used in Kernel Density Estimation A1 A

Spatial relation �Eq. �1�� −8.03 −4

Intensity+spatial �Eq. �3�� −8.15 −4

Our method �Eq. �9�� −11.67 −10

Fig. 1 Original images and the corresponding local standard devia-
tion images: �a� and �c� original IR images and �b� and �d� the cor-
responding local standard deviation images.
Optical Engineering 110502-2
ertain IR image, the kernel bandwidth hs=hr= �hx ,hy� is
efined as

x = min��� M00

�max
�1/2

,rows�� 2,

y = min��� M00

�max
�,cols�� 2, �8�

here � and � are the factors that are determined by our
nderstanding of the target distribution. Thus, the target
odel representation is then defined by

u =
C

hs
2hr

p�
i=1

n

ks�� xi
s − c

hs
�2�kr�� xi

r − v
hr

�2��	b�xi� − u
 , �9�

here c= �cx ,cy� and hs=hr= �hx ,hy� are computed by Eqs.
7� and �8�, respectively; and v is obtained with the value at
osition �cx ,cy� in the quantized intensity value space.

Experimental Results

n our experiments, an outer margin of 10 pixels from the
arget region forms the background sample. For the target
egion, a Gaussian kernel is adopted, while for background
egion, we use a reverse Gaussian kernel.

Our insight is that the best-designed target model can
est distinguish between target and background for a robust
racking task. The discrimination of different target models
an be embodied by relative entropy values which are
iven by

ent target model representations.

Relative Entropy Values

B1 B2 C1 C2 D1 D2

−9.11 −5.10 −3.54 −1.76 −3.95 −2.64

−11.28 −8.09 −2.70 −1.45 −4.60 −2.84

−12.67 −11.00 −4.83 −6.62 −4.97 −3.99

ig. 2 Eight typical IR images and the marked target regions: A1,
1, C1, and D1, IR images with the appropriate target regions; A2,
2, C2, and D2, target regions poorly located of the corresponding

R images.
f differ

2
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W�p,b� = − �
u=1

m

p�u�log	p�u�/b�u�
 − �
u=1

m

b�u�log	b�u�/p�u�


�10�

where p and b are the target kernel density distribution and
the background kernel density distribution, respectively.
Here W�p ,b� is a negative value, and a small W�p ,b�
means a high separation power for target and background
by the corresponding kernel density estimation method. In
Fig. 2, eight typical 128�128-pixels IR images are se-
lected to confirm the validity of our approach. The rect-
angles in the IR images show the target regions. Table 1
shows W�p ,b� values of different representations of the tar-
get model with several kernel density estimation methods.
Here, we find that the method, which incorporates multi-
information of target region, is more effective where used
in a tracking framework because the discrimination of the
target and background indicated by W�p ,b� values. More-
over, when the target region is poorly located, the superi-
ority of our method over two other methods is evident.

We also embedded the proposed kernel density estima-
tion in a mean shift tracking system. Figure 3 shows some
selected frames of a 180-frame test video sequence where
each frame is 128�128 pixels. Here, the intensity space is
taken as the feature space and it is quantized into 32 bins.
The tracking algorithm with different target model con-
structions was developed in Matlab7.0 on a Pentium 4 plat-
form. In Figs. 4�a� and 4�b�, the rectangles on the left IR
images show the initial target bounding box and the plots
on the right show the tracking performances of mean shift
tracking algorithm with different target model representa-
tions. It is shown that the proposed method is more effec-
tive to help to track the target with minor prediction errors,
and the superior performance is obvious when the initial
selected target region is poorly located. Undoubtedly, the
additional computational complexity incurred by the pro-
posed target model representation per frame is dominated
by the computation of local standard deviation and mo-
ment. Based on the target information in the previous
frames, we perform this computation in a region that is
2 to 3 pixels larger than the actual target region size. The
current implementations of the mean shift tracking algo-

Fig. 3 Test sequence.
rithm with the initial target bounding box illustrated in Fig.
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�a� are capable of tracking at 15, 14, and 13 frames/s for
he target models obtained with Eqs. �1�, �3�, and �9�, re-
pectively. As such, if the tracking algorithm adopts the
nitial target bounding box shown in Fig. 4�b�, the target

odels represented by Eqs. �1�, �3�, and �9� enable tracking
t frame rates of 15, 14, and 12 frames/s, respectively.
rom this, we find that the tracking algorithm with the pro-
osed target model construction is competent and a little
ore complex with respect to computational complexity

nd cost of implementation.

Conclusions

new method that incorporates multi-information into the
ernel density estimation of an IR target model was pro-
osed. The local standard deviation information was de-
igned to select the appropriate target center and kernel
andwidth. This constructed target model was evaluated
ased on the relative entropy of two classes and applied in
mean shift tracking system for IR target tracking to verify

he effectiveness.
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