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Abstract. An algorithm is described for measuring the subjective,
visual impact of 1-D defects (streaks and bands) in prints. A general
approach to measurements of spatially localized image defects is
described, attempting to directly match three stages of processing
by the human observer: formation of the perceived image, identifi-
cation of individual defects, and pooling of the visual defect magni-
tudes into an overall assessment. The emphasis of the discussion is
on the method of pooling of multiple streaks and band defects. It is
demonstrated that the commonly used Minkowski pooling method
does not satisfy the basic criteria necessary for this application, and
a tent-pole pooling method is defined and analyzed. A complete
algorithm for measuring streaks and bands, which uses tent-pole
pooling, is described. The performance of the algorithm is demon-
strated by comparison to results from new and independently col-
lected subjective ratings. © 2010 SPIE and IS&T.
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1 Introduction

Streaks and bands remain among the most challenging de-
fects for digital printing technologies, both in terms of the
difficulty of eliminating the defects from a design and
manufacturing perspective and in terms of their impact on
the perceived quality of printed documents. Even high-
quality offset printing is not immune to these types of de-
fects. A print with a pattern of bands where CIE (Commis-
sion International de L’eclairage) L* varies sinusoidally
with an amplitude as low as 0.2 can be objectionable at
certain spatial frequencies, thus placing extremely tight tol-
erances on the printing process. There is significant litera-
ture on determination of perceptibility and acceptable lev-
els of specific streaks and bands defects,' including
efficient softcopy methods with simulation of printer band-
ing defects.’

The topic of this paper is instrumented, analytical mea-
surements (in short, “measurements”) of streaks and bands,
that correlate with human subjective assessment of the print
samples. Note that both the measurements and subjective
assessments reported in this paper are performed on test
charts, where a perfectly produced print sample would dis-
play a large area of absolutely uniform color. Although this
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kind of assessment is artificial in some ways, it is a very
common type of assessment and is very important to printer
manufacturers.

The mechanisms that cause streaks and bands are many
and varied, and with each mechanism is a specific, some-
times unique, appearance, or defect “look.” Such mecha-
nisms include, for example, weak or missing jets, poor mo-
tion quality, and contamination of electrophotographic
charging elements. For any given mechanism and defect
look, it is relatively easy to develop a measurement that
correlates with visual perception of the defect, as the mag-
nitude of the defect varies. For example, if the defect is a
sinusoidal variation of L* with a 10-mm period, a simple
measurement of the amplitude will suffice, and may be use-
ful for optimizing the design of components that are re-
sponsible for the defect. Such measurements are of limited
value, however, since comparisons often must be made be-
tween defects with varied looks. A good example of this is
when the measurement is to be used for competitive bench-
marking or for any other comparison that involves signifi-
cantly different printing technologies. The International
Committee for Information Technology Standards (IN-
CITS) W1.1 standards activity has focused on exactly this
subject:4 to define measurements of print quality attributes
that correlate with visual perception, even when the print
samples span across many printing technologies, i.e., for
technology-independent measurements.’ The INCITS W1.1
macro-uniformity activity addresses print quality defects
that include streaks and bands, but also 2-D macrounifor-
mity defects such as mottle. That activity has not been able
to identify existing measurements for overall macro unifor-
mity that are technology-independent and correlate well
with human visual perception. The task is a bit easier when
only 1-D defects such as streaks and bands are considered,
and that is the subject of this paper.

This paper demonstrates general principles related to
technology-independent, perceptually correlated measure-
ments of spatially localized image defects, and then exem-
plifies those principles via a specific measurement algo-
rithm for streaks and bands.® The algorithm attempts to
directly represent the subjective evaluation process by three
stages: (1) formation of the perceived image, (2) identifica-
tion and assessment of individual defects, and (3) pooling
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of the visual defect magnitudes into a single numerical
overall assessment of the print sample. It is a conjecture of
this paper that these three stages describe the overall sub-
jective assessment well. Section 2 examines “defect diver-
sity”” of a set of print samples, then goes on to discuss the
three major stages of the visual assessment of streaks and
bands. Section 2 further discusses how to quantify the in-
dividual defects in preparation for pooling of multiple de-
fects, and presents a psychophysical experiment to deter-
mine how to modulate defect amplitudes before pooling.

Section 3 examines the suitability of existing pooling
models for the streaks and bands application. The effect,
colloquially called the tent-pole effect, for judgment of the
overall quality of an image with multiple attributes of im-
pairment, is the effect that the observer tends to focus on
the worst attribute, such that other attributes are given less
significance than if they had been present as the only at-
tribute of impairment. The common use of Minkowski
summation of impairment attributes is a testament to the
tent-pole effect, since this form of pooling ensures that the
largest value receives relatively greater weight. Wang and
Shang7 investigated several alternative spatial pooling strat-
egies, including a local distortion-weighted pooling, also
based on the observation that the worst areas of the image
should be given larger weight. They found success with
application to assessment of pictorial image defects. How-
ever, Sec. 3 will argue that neither Minkowski summation
nor the local distortion-weighted pooling work well for the
streaks and bands application. Section 3 introduces “tent-
pole defect pooling” as a method to model the last of the
three stages and explains a psychophysical experiment used
to determine a reasonable “tent-pole function.”

Section 4 explains a particular implementation, the vi-
sual streaks and bands (VBS) algorithm, of the principles
discussed in Secs. 2 and 3. Section 5 explains a subjective
evaluation method and presents a comparison between
VBS measurements and subjective assessments. The sub-
jective assessments were conducted by the WG4 committee
of Japan, in the context of the International Organization
for Standardization/International Electrotechnical Commis-
sion (ISO/IEC) SC28/WGH4 activity toward development of
ISO 24790, and the Japanese WG4 committee kindly pro-
vided data reported in Sec. 5 of this paper. The comparison
covers a large, diverse set of print samples, which were
collected and evaluated visually by the WG4 group, en-
tirely independent of the earlier development of the VBS
algorithm. Finally, Sec. 6 discusses known limitations of
the measurement approach.

As already mentioned, streaks and bands remain very
significant issues for printer manufacturers, and as a conse-
quence there is significant literature that analyzes various
aspects of the defects. Mizes et al." and Cui et al.” investi-
gate perceptibility of random streaking and of inkjet band-
ing, respectively. Several authors focus on the physical
characterization of the defects,8 and as part of that, consider
the difficult problem of how to isolate and characterize spe-
cific defect types on real prints that contain a multitude of
interacting defects, for example, using combinations of
wavelet and discrete  Fourier transform  (DFT)
techniques.g’11 These efforts also address the ability to pre-
dict subjective assessments based on the physical charac-
terization, however, not in situations where a single subjec-
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tive evaluation covers multiple types of defects; that is,
they are limited to low defect diversity, as described in Sec.
2. While most previous work addresses perception and
measurement of streaks and bands on uniform test charts,
Bang et al. developed a method to assess discrimination of
levels of banding in the more realistic and relevant situation
where the defects are imposed on pictorial images.12

1.1 Terminology of Streaks and Bands

There does not seem to be universally accepted precise
definitions of the terms “streaks” and “bands.” Both terms
refer to the presence of linear (1-D) patterns in the image,
where the color differs from the surrounding color. The
color difference could be purely in lightness, as in the case
of “dark streaks,” or it could involve chromatic variations,
as in the case of “rainbow banding.” Sometimes, but not
always, streaks are taken to mean more or less isolated,
aperiodic linear defects running in the process direction, for
example, caused by a single missing jet. Bands are some-
times, but not always, used to refer to linear defects that run
in the cross-process direction, repeating periodically (per-
haps sinusoidally) in the process direction, for example,
caused by motion quality problems. The measurement al-
gorithm described in this paper does not make any distinc-
tion between isolated or repetitive linear defects, and there-
fore precise definitions of streaks and bands are not
necessary; however, for the verbal discussion it is useful to
use both terms largely following the usage described above,
but with some differences, as noted here.

1. Bands: The presence of multiple linear defects run-
ning either horizontally or vertically in the image (a
distinction is not made between process and cross-
process directions). The multiple defects would typi-
cally follow a periodic pattern in the direction per-
pendicular to the defects, e.g., a sinusoidal lightness
variation. A pattern of such bands is not considered as
a single defect, but considered to consist of multiple
unrelated defects. An example of bands is given in
Table 1 defect class III.

2. Streak: A single linear defect running either horizon-
tally or vertically in the image. Examples of streaks
are given in Table 1 defect class I (single streak) and
class IT (multiple streaks).

The VBS algorithm operates on the hypothesis that the
overall subjective quality can be modeled by characterizing
the image in terms of individual, unrelated linear defects,
even in the case of periodic bands; therefore, it is some-
times useful in this paper to refer to the individual linear
defects in a pattern of bands, as a “streak.” Note that linear
defects that do not run horizontally or vertically are not
considered as streaks or bands, and are not within the scope
of this paper.

2 Defect Diversity and Factors of the Perceptual
Assessment

To construct a successful, perceptually correlated measure-
ment of streaks and bands, it is important to consider care-
fully the process of visual assessment, even—perhaps
especially—those parts of the process that are less well
understood, such as those strongly influenced by subjectiv-
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Table 1 Four classes of defect diversity.

Class Example of sample set Characteristics Requirements for adequate
measurement
g(x)=Af(x) Any measurement that captures the
_ Samples have (almost) identical amplitu(?e of the defect (contrast).
1 spatial patterns, that vary only by Correlation .to perceptual .
_ simple scaling of the contrast. One assessme.nt is almost certamlA
“look.” human visual system model is not
required.
Both the contrast and the spatial Same as for class I. See text for
pattern vary between samples. assumptions.
_ However, the samples have
essentially identical amplitude
I .- spectra (except for an amplitude
scaling factor) and appear to have
only one “look”, with variation
_ only in contrast.
Example: Random streaking with
1/f amplitude spectrum.
gx)=Af(x/ Q) A human visual system model must
The samples vary both in contrast be apPlled, e.g. a simple CSF, but
_ and in spatial appearance, but the there. is no need for complex defect
101 variation of the spatial pattern is pooling.
limited to changes of the amplitude
_ and of the spatial scale, such that
all samples have essentially the
same “look.”
Most diverse sample set: Must encompass both a human
- Contrast and spatial scale varies. visual system model, such as a CSF,
- Multiple different “looks.” and a model of more complex
R

Note: The classes refer not to a single print sample, but to a set of print samples used to test correlation
between measurements and subjective assessments. Each class has different requirements as to which
parts of the subjective evaluation process must be taken into account. The print sample set used for the
subjective ratings in Sec. 5 belongs to class IV. The functions g(x) and f(x) represent the 1-D luminance
variation across two different samples belonging to the same class.

ity. This section and the next discuss general principles,
then Sec. 4 discusses how these principles are applied for
the VBS algorithm for streaks and bands.

The measurement algorithm described here was devel-
oped with the objective to replace (when combined with
other algorithms) a time-costly visual assessment procedure
called “DAC Macro—uniformity.”13 DAC Macro-uniformity
is defined nearly identically to the macro-uniformity at-
tribute as defined by the INCITS W1.1 macro-uniformity
team,4 and covers in addition to streaks and bands 2-D
defects such as mottle. The performance of the VBS algo-
rithm, when combined with measurements of 2-D defects,
in terms of prediction of DAC ratings, has been reported
earlier.® In this paper, the focus is strictly on 1-D defects,
and the measurement algorithm is tested against visual as-
sessments performed under the ISO 24790 activity. All
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three visual assessment procedures are very similar and use
the following general procedure. The observer is presented
with print samples of a test chart that contains a large nomi-
nally uniform region (dimensions vary in the range from
170X 170 to 200 X 300 mm) and is directed to assess the
overall appearance of the uniformity of each print sample.
The samples typically contain multiple defects in both hori-
zontal and vertical directions, and the observer must assign
a single numerical value that represents the overall assess-
ment. More details on the subjective method are given in
Sec. 5.

Theories of visual perception operate with several stages

of visual processing,m’15 starting with the physical optics of
light forming an image on the retina, followed by increas-
ingly complex stages of image and data processing. After
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the retinal image is formed, image-based processing fol-
lows, then surface-based, object-based, and category-based
processing. The later stages of the visual processing are
related to interpretation and mapping to the 3-D physical
world, and are less important to the task of streaks and
bands assessment when using test charts. For the purpose of
this discussion the assessment process is organized into
three stages.

Stage 1: the perceived image. The optical imaging on
the retina and the initial image-based processing leads to
the 2-D perceived image. This stage starts with the physical
imaging of the object through the lens of the eye, forming
an image with finite resolution on the retina. For a gray-
scale image, the result of further image-based processing
can to first order be characterized by human visual contrast
sensitivity functions.'® This first stage accounts for effects
that are not under our conscious control, for example, Mach
bands, which appear as a result of the bandpass nature of
the optical and image-based processing. The output from
this stage will subsequently be referred to as the perceived
image. A relatively high degree of consistency between ob-
servers can be expected at this stage, with variations being
driven by physiological differences between observers.

Stage 2: defect identification. The analysis of the per-
ceived image leads to conscious decisions*about the pres-
ence of one or more defects in the image. In the case of
streaks and bands on a test chart, this means defects that
observers can point to and verbally describe. For some im-
ages, the processing and analysis that take place during this
stage may be straightforward, for example, in case of an
image that is perfectly uniform except for the presence of a
single streak. In other cases, there is not a unique solution
to the decomposition of the perceived image into a set of
discrete defects, and the observer may perform some de-
gree of interpretation. Human observers, especially expert
observers as used for the data in Sec. 5, perform this task
very well, relying partly on background knowledge about
the types of defects that are commonly encountered. There-
fore, a relatively high degree of consistency among observ-
ers can be expected even at this stage (at least compared to
the far more subjective process in stage 3).

Stage 3: defect integration (or “pooling”). The con-
scious pondering of how the collection of defects “adds up”
to an overall subjective judgment. The reduction from nu-
merous perceived defects to a single numerical rating in-
volves nontrivial comparisons and highly subjective
judgments—processes that presumably take place well out-
side of the brain’s visual cortex. It can be argued (see Sec.
6), that a meaningful defect integration cannot be per-
formed based purely on the information present in the per-
ceived image, and in the absence of information on how
observers perform this task, it could be tempting to ignore

"It is important here to recall that the assessment is performed on nominally uniform
test targets, such that the observer’s attention is not distracted by image content, but
is solely focused on the defects. It is under that condition only, that we conjecture
that observers will tend to identify specific defects.
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the complexity of this stage, and model it in a simplistic
manner. However, meaningful or not, the defect integration
is performed, and a reasonable model for this stage is criti-
cal to an overall well-correlated measurement.

In summary, consistent with these three stages the mea-
surement should be composed of the following steps:

1. digitization of the hardcopy and conversion of the
digital image values to a colorimetric space

2. modulation of the image to obtain a representation of
the perceived image

3. identification of individual defects from the perceived
image, and characterization of each defect in a man-
ner that lends itself for subsequent pooling (e.g., nu-
merical characterization of amplitude, size etc.)

4. defect integration (pooling) to obtain a single numeri-
cal rating of the sample

This is the general recipe for measurements of spatially
localized defects that is used by the VBS algorithm de-
scribed in Sec. 4.

2.1 Classes of Defect Diversity and Complexity
of Assessment

One of the most successful applications of the human con-
trast sensitivity function (CSFg to print quality measure-
ments is that of graininess,lL1 obtained by integration of
the CSF-weighted Wiener spectrum. For streaks and bands,
this approach does not work, because it ignores the phase
relationships, and therefore ignores stages 2 and 3. In the
case of graininess, even though the observer can in fact
perceive individual defects, in the form of grains, that is not
how the typical subjective judgment of graininess is
performed—rather, the observer judges graininess as a
single entity that is spatially distributed and homogenous at
large scales. Therefore, for assessment of pure graininess,
stage 3 is trivial. As mentioned previously, the literature
covers methods that produce good correlation between
measurements and perception of streaks or bands, but often
demonstrated only for specific applications using a set of
prints with limited or unknown diversity of defects. Defect
diversity refers to the amount of variation of the “looks” of
the defects that are present in a given set of prints that are
used to test correlation between measurements and obser-
vations. Table 1 illustrates four significantly different
classes of defect diversity. For streaks and bands, there are
important examples of each class.

As an example consider random streaking. Random
streaking in printers is often characterized by a 1/f noise
spectlrum,1 within a certain range of spatial frequencies.
Assuming that the image size is large enough compared to
the lowest spatial frequency, and assuming that the overall
contrast is large enough that a very large number of streaks
are above the perception threshold, then different images of
the same normalized amplitude spectrum will to the ob-
server appear to have the same “look™ and will appear to
differ significantly only in terms of the overall contrast (see
Table 1, class II). Notice, however, that at a detailed level,
the images would differ significantly. Given that the
samples are characterized by essentially identical amplitude
spectra (except for an amplitude scaling factor), a good
correlation to visual assessments can be obtained solely
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Fig. 1 (a) Segment of an image displaying vertical streak defects. (b) The L+ profile of (a) in the
horizontal direction. The single most prominent defect is the narrow light streak near position 150. That
defect and a few of the other visually prominent defects are marked by the arrows. (c) The pointwise
error squared, calculated by squaring the deviation from the mean L*. (d) The absolute value of the
deviations from the mean of the “perceived profile” obtained by bandpass filtering the profile in (b). The
order of the defect magnitudes, as used for tent-pole integration, is indicated (the separation into three
frequency bands, explained in Sec. 4, is not illustrated here).

from a measurement of the overall contrast, even without
taking the CSF into account. Such a sample set belongs in
class II. If the amplitude spectra are allowed to vary from
sample to sample away from the 1/f distribution, then it
will be necessary to take the CSF into account, and this
situation—similar to graininess—belongs in class III.
During development of a printer, when technology pa-
rameters are varied for optimization, the defect diversity
observed in the print samples often belongs to classes I, II,
or III. When limited to such cases, it may be relatively easy
to find a measurement that correlates with visual assess-
ments. The challenge comes, as noted earlier, when faced
with class IV defect diversity, which is the case for com-
petitive benchmarking and for technology-independent
measurements. For class IV defect diversity, it is critical to
directly address defect detection and pooling. Section 2.2
discuss an experiment and a method to quantify individual
defects, and section 3 will discuss pooling of the defects.

2.2 Quantification of Individual Defects in the
Perceived Image—The Visual Defect
Magnitude

The remainder of this paper until the subjective assessment
in Sec. 5 treats only the case of gray-scale images, rather

Journal of Electronic Imaging

011017-5

than full color images. The concepts can be readily ex-
tended to color images. Print samples can be digitized, e.g.,
with a flatbed scanner, and the image converted into CIE L*
lightness space. However, due to the bandpass luminance
CSF, there will generally be significant discrepancies be-
tween this “measured image” and what the human observer
sees, the “perceived image.” Figure 1 illustrates the criti-
cality of taking the CSF into account, since direct measures
of the magnitude of deviations from the mean of the L*
profile do not correlate well with perceived defects.

The CSF depends on many factors of the sample and
viewing conditions.'® The VBS algorithm is designed to
use a slightly modified interpretation of the CSF, which in
the remainder of this paper will be called the quality im-
pairment function (QIF). The rationale for this is as fol-
lows. The threshold CSF is a measure of the thresholds
[e.g., 50% just noticeable difference(JND)] of perceptibility
of sinusoidal luminance variations—thus, by definition is
not necessarily applicable to suprathreshold luminance
variations. Even contrast-matching sensitivity functions,
determined in the suprathreshold regime, cannot be directly
interpreted to assign a measure of quality impairment to an
individual streak defect, because the question of matching
contrast is fundamentally different than the question of
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matching quality. Consider two printed pages, each with a
single streak in the shape of a full cosine period (that is, the
edges are soft) on an otherwise perfectly uniform page. On
one page the streak is 2 mm wide, on the other it is
100 mm wide. For the VBS algorithm, the key question is
at which relative amplitudes observers would rate the two
pages to have the same overall quality. Even if the CSF-
modulated amplitudes of the streaks match, that does not
imply that the overall quality of the page would be rated the
same, because the narrow streaks impact only a very small
part of the image.

2.2.1 Experiment to determine QIF

A survey was conducted to directly address this question,
with the goal of being able to assign a visual defect mag-
nitude & to each individual streaklike defect. Prints with
simulated dark streak defects were generated, using a pho-
toquality ink jet printer. The prints were letter sized with a
uniform base gray with L*=Lg=75. The prints were pre-
sented to observers using a mask, such that only a rectan-
gular subregion of the print was visible. The width (x di-
rection) of the visible region was held constant at 170 mm.
Several values in the range from 20 to 170 mm were used
for the height E of the visible region, thus varying the vis-
ible length of the streak. The image content was given as
follows:

L (x,y)=Lg— %{1 + cos[27(x — x)/w]}

for x € [xg— w/2,xo+w/2], (1)

and L*(x,y)=Lj elsewhere, resembling the images in Table
1, class I. Here x is the center of the streak and was varied
pseudorandomly from sample to sample, but in such a way
that there was always at least 10 mm of uniform region
visible on each side of the streak. Also, A is the amplitude
from the base Ly to the L* minimum at the center of the
streak, and w is the full width of the streak. The survey
used eight different streak widths: w=1, 2, 4, 8, 16, 32, 64,
and 125 mm. The amplitudes were adjusted depending on
the streak width, to range from barely perceptible, to
clearly perceptible (several L* units).

Observers were directed to rate the quality of each
sample, imagining that it would be used for a document
cover page that was intended to be uniform gray. Two an-
chor samples were displayed corresponding to the worst
quality level with anchor value 1, and the highest quality
level (no perceptible streak) with anchor value 10. The
samples were viewed at approximately a 40-cm viewing
distance, in a well-lit office, but otherwise uncontrolled
viewing environment. The samples were rated by 20 ob-
servers, and the median of the 20 individual ratings was
used as the measure of the sample quality.

The QIF was then determined as follows, in a manner
that is consistent with its application to the VBS algorithm,
including pooling of multiple defects. Each print sample
was scanned with a calibrated drum scanner, and the light-
ness profile L(x) across the streak, was calculated (this step
is performed to eliminate the effect of discrepancies be-
tween the intended and actual image content, caused by
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Table 2 Parameter values used in Eq. (2) for QIFs optimized for 20
and 170 mm heights, respectively (these functions are shown in
Fig. 3).

Optimized for a b k fo

QIF 1 E=20 mm 0.553 0.40 1.80 0.074

QIF 2 E=170 mm 0.617 0.40 1.33 0.074

limitations of the ink jet printer). Assuming a QIF of the
following form, where f is the spatial frequency in cycles
per millimeter (¢/mm):

QIF(f) =a + b tan "{k[log(f/fy)]} for f<1c/mm. (2)

A filtered profile was calculated as  h(x)
=FYQIF F[L(x)]}, where F represents the Fourier trans-
form. The VBS algorithm is designed to exclude high-
frequency defects (see Sec. 4), so the domain f>1 ¢/mm
was not used. The visual defect magnitude of the streak &
was then defined as the positive difference from the mini-
mum value to the base level of the filtered profile, that is,
6=h(0)—min h(x). The goal was to find a QIF such that &§is
proportional to the subjective judgment of quality impair-
ment, independently of the spatial shape of the streak. This
means, in particular, that when & is plotted against the qual-
ity rating, it should form a single curve, independent of the
streak width. In general, there is no guarantee that a QIF
can be determined such that this is the case, but the param-
eters of Eq. (2) can be optimized to provide a linear fit with
the smallest mean squared error.

This parameter optimization was performed for both E
=20 mm and E=170 mm, leading to two different QIFs, as
shown in Table 2. Figures 2(a) and 2(b) show the visual
defect magnitudes & calculated with these two QIFs, both
plotted versus the subjective quality ratings for E=20 mm.
Figure 2(a) shows, as expected, that when the QIF is not
optimized for the correct height E, then the data points
corresponding to different streak widths do not form a
single curve. Figure 2(b) shows the width-independent
function obtained when the parameters for the QIF are op-
timized for E=20 mm (QIF 1 in Table 2). Figure 2 also
illustrates the importance of taking the height E into ac-
count when performing subjective experiments for streaks
and bands, since small values of £ would significantly un-
derestimate the impact of wide, relative to narrow, streaks
when viewed on a full page.

In a similar manner, an optimal QIF was determined for
the case the E=170 mm mask. The optimal QIFs for the
two cases are graphed in Fig. 3. Note that due to the streak
widths used in the experiment, the QIFs were determined
only for frequencies less than 1 ¢/mm, and were arbitrarily
normalized to =1.0 at f=1 ¢/mm.

The results described in this section provide the basis for
assigning an individual streak defect with a scalar value &
called the visual defect magnitude, in such a way that & is
proportional to the perceived impairment of the overall
quality. The next section discusses general aspects of how
to pool the effects of multiple defects that are present on a
single page. The details of how multiple defects are identi-
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Fig. 2 Calculated visual defect magnitudes versus subjective quality ratings for mask E=20 mm, for
two different QIFs: (a) defect magnitudes calculated with the nonoptimal QIF 2 (optimized for E
=170 mm), leading to width-dependent curves; and (b) defect magnitudes calculated with a QIF opti-
mized for E=20 mm, leading to a width-independent relationship.

fied and characterized from L* profiles, are postponed until
the discussion of the VBS algorithm in Sec. 4.

3 Tent-Pole Pooling of Discrete Defects

Going back to the perceived image, there are several seem-
ingly reasonable ways to proceed to calculate measures that
may correlate with an overall subjective rating. There is
significant literature on advanced models of the visual sys-
tem, which can successfully be used to predict perception
of defects in pictorial images, useful, for example, for
evaluation of display systems and compression
algorithms.zm22 The models take into account advanced as-
pects of the human visual system, beyond the CSF, and can
calculate an image detection map, where each pixel value
represents the probability that a difference between the
original and the processed image will be detected at that
location in the image. Norms of the image detection map

Quality Impairment Function

——&—- E=20 mm
—<— E=170mm

Modulation

o 170 mm

A
Spatial frequency [c/mm] (logarithmic)

Fig. 3 QIFs tuned for E=20 mm and E=170 mm, respectively. The
VBS algorithm eliminates high-frequency signals, so the QIFs were
not determined at higher frequencies.
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(e.g., max-norm, Lp-norms) can then provide measures of
the overall image degradation. In the 1-D case of streaks
and bands, the “perceived profile” h(x) can be used in a
similar manner. We can calculate the perceived profile as
h(x)=F"'Y{CSF F[L(x)]}. The deviation from the mean is

calculated as

D(x) = h(x) - h, (3)

where 4 is the mean of /(x). The absolute value of |D(x)| is
illustrated in Fig. 1(d). According to the simple CSF model
of the visual system, a location in the image where |D(x)| is
relatively large, is perceived as more different from the
mean; that is, it contributes significantly to the perception
of overall nonuniformity. An overall measure could then be
obtained by integration of the profile over the length L:

L 1/p
D], = ( f ID(x)Ide> , (4)

0

where the exponent p controls to what extent larger devia-
tions dominate compared to smaller deviations. Variations
on this theme exist, for example, introduction of a percep-
tibility threshold, such that the integration is effectively
limited to regions where D(x) exceeds that threshold. How-
ever, as discussed in the previous section, there is nothing
in the theoretical or experimental foundation for the CSF,
or the construction of D(x), that suggests that Eq. (4) would
yield a particularly good measure of the overall quality. On
the contrary, there are clear problems with such an integra-
tion, as illustrated by Fig. 1(d). For p=1, the integral is the
area under the curve, which means that the width of the
defect, as represented by D(x), has a significant impact [it
was precisely for this reason that the previous section in-
troduced the QIF to allow a more direct interpretation of

D(x)].
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Fig. 4 Pooling of N identical defects each of magnitude 1. The first axis indicates the number of
defects, while the second axis is the measure of the overall impairment (the pooled value). (a)
Minkowski summation and tent-pole pooling (see Sec. 3.2) over a potentially large number of defects
and (b) the range up to N=20 including experimental data as described in the text. The solid line is the
cumulative tent-pole function for Eq. (9), while the vertical bars show the corresponding tent-pole

function T(N).

3.1 Requirements to Pooling Methods

To proceed, we consider how visual defect magnitudes may
be combined in cases where a single print contains more
than one defect. Three assumptions are made about the
overall subjective assessment process:

1. (A1) Assume that the observer identifies a finite set of
N discrete defects in the perceived image, and that
each defect is associated with a certain magnitude &;
according to how the defect would have been as-
sessed, had it appeared in isolation on an otherwise
perfect image. The ; values are interpreted as the
visual defect magnitudes described in Sec. 2.2.

2. (A2) Assume that the subjective assessment of over-
all quality Q does not depend on the spatial arrange-
ment of the individual defects. This assumption is at
least somewhat reasonable, since visual spatial pro-
cessing was taken into account during stage I, al-
though masking of one defect by another has not
been taken into account. The perceived defects in the
image are then completely characterized by a finite
series Q={5}Y,.

3. (A3) Finally, assume that the subjective assessment
of overall quality is a function only of the series ()
={8}Y,, so that the overall quality impairment is

AQ=AQ(Q).

The equivalent of Eq.(4) for a series of discrete defects
is the commonly used Minkowski summation:

N 1/p
M,= (E 8;’) , (5)
i=1

which has been reported to provide a good model for the
combined effect of sub- or near-threshold stimuli,23 as well
as for multiple suprathreshold stimuli, and often is used
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with exponents p in the range from 2 to 4. The remainder of
this section argues that Minkowski summation is not suit-
able for the streaks and bands application, and proposes an
alternative based on experimental data.

In the limit of large p, M, approaches the max norm. It
is well known that subjective assessments of overall quality
tend to be dominated by the worst defect, and the max
norm is the extreme representation of that effect. However,
it is apparent that if the magnitude of any one defect is
increased (even one that is smaller than the largest defect),
then the overall quality must decrease, if even by a very
small amount. In particular, an image with two identical
defects must have worse quality than the image with just
one such defect. Minkowski summation with a sufficiently
large p value will suffer from the same problems, but
smaller values of p provide defect pooling that is accept-
able from this perspective alone. It can also be expected
that the overall impact of two defects is less than the sum of
the defect magnitudes. The Minkowski summation repre-
sents this well, as illustrated in Fig. 4(a). This graph shows
M, of Eq. (5) as a function of the number of defects, in the
case where all defects have identical magnitude &;=1
(where M, reduces to N UP). For the application to streaks
and bands it is important to consider relatively large num-
bers of defects. For example, a page that is 200 mm wide
with 5-mm sinusoidal banding, contains 40 periods, which
can be interpreted as 40 light streaks and 40 dark streaks,
that is, a total of 80 defects. Another example is given by
Fig. 1(d), which displays =90 local maxima, each inter-
preted as an individual defect. These examples support the
following postulate, that the defect pooling must asymptote
to a constant value rather quickly as the number of defects
(even with identical magnitude) increases. If an image con-
tains numerous but very faint streaks, there is a limit to how
poor the sample will appear, regardless of the number of
such faint streaks; it will always appear better than a
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sample with a single severe streak. If it is required that the
pooled value of N defects of magnitude & increases only
insignificantly (<) as N increases from, say, 50 to 100,
then Fig. 4(a) shows that Minkowski summation with p
=<3 is disqualified.

Let AQ(N) denote the subjective impairment of overall
quality due to N defects of identical visual magnitude &
=1. We then define the tent-pole function, T(N), as the
incremental impairment from N—-1 to N defects; that is,
T(N)=AQ(N)-AQ(N-1), where N=1. By definition
T(1)=1. The curves in Fig. 4 represent the cumulative tent-
pole function CT(N)=Efi1T(i), which correspond to the
overall impairment AQ(N).

3.1.1  Experiment to determine pooling of defects
of identical amplitude

An experiment was conducted to determine the pooling be-
havior for images with fewer than 20 defects of identical
amplitudes. The experiment used a calibrated monitor to
display a pair of images of a uniform gray background with
one or more vertical streaks. The shapes of the streaks were
given by Eq. (1) and the full streak width was constant at
4 mm. The locations of the streaks were pseudorandom, but
arranged such that there was at least 10 mm of uniform
background between streaks. Thus, the observer was pre-
sented with two images, where one image contained N;
streaks of amplitude A, and the other image contained N,
streaks of amplitude A,. The experiment included compari-
sons of images with streak count N=1, 2, 4, 8, and 16, but
the analysis used only the data where one of the two images
contained a single streak. The observer was asked to imag-
ine that each image represented the cover page of a docu-
ment, intended to be uniformly gray, and was forced to
select which of the images would produce the best overall
quality. Ten observers participated in the experiment, and
the results were averaged over the observers.

If O(N,Ay) denotes the quality of an image with N
streaks each with amplitude Ay, then it is possible to deter-
mine (by interpolation) the amplitude A, required for an
image with a single streak to yield the same overall quality:
O(1,A;)=0Q(N,Ay). With A; and Ay defined in this way,
the ratio of amplitudes can be calculated, as an estimate of
the cumulative tent-pole function:

Cr(N)=—. (6)
N

The experimental values of C(N) are shown on Fig. 4(b)
for comparison with Minkowski summation. Minkowski
summation with exponent p >3 does not match these ex-
perimental data, which combined with the prior observation
for p=3 rules out Minkowski summation as a viable op-
tion for the streaks and bands application.

3.2 Tent-Pole Pooling

As mentioned in the introduction, the common use of
Minkowski summation (with p>1) of impairment at-
tributes is a testament to the tent-pole effect, since this form
of pooling ensures that the largest value receives relatively
greater weight; but as argued above, there are other reasons
that Minkowski summation does not work well for the
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streaks and bands application. The alternative local
distortion-weighted pooling strategies investigated by
Wang and Shang,8 are not suitable either, since in the limit
of N identical defects the distortion-weighted pooling
scales linearly with N. An alternative pooling method was
proposed6 that attempts to more directly represent the ob-
server’s conscious pondering during stage 3 of the assess-
ment:

- with 8= 3, (7)

-

M=2

i_
i=1 P

where M is the pooled value of the defect magnitudes, and
is expected to correlate to the overall quality impairment.
The parameter p > 1, controls the strength of the tent-pole
effect, with larger values of p causing the larger defect

magnitudes to dominate more. Note that as earlier, Q

={8}Y, is the set of visual defect magnitudes, but sorted in
descending order of magnitude. Sorting the defects accord-
ing to magnitude enables the tent-pole effect to be modeled
more directly. When pooling according to Eq. (7) is per-
formed on a series of defects with identical magnitude 6,
the result is a geometric series that asymptotes to /(1
—1/p). The cumulative tent-pole function for the pooling
mechanism of Eq. (7) is shown in Fig. 4 for p=1.55, which
yields the best fit to the experimental data [if constrained to
the form of Eq. (7)].

This discussion of the tent-pole function is based solely
on considerations of images with multiple defects of iden-
tical visual magnitude. Without any further experimental
evidence, we propose that the application of the tent-pole
function can be generalized to also represent the diminish-
ing significance assigned to defects in the presence of other
defects with greater magnitude; that is, that the overall im-
pairment is

N
AQ(Q) =X T(i)8 with &= &, (8)

i=1

We denote Eq. (8) as tent-pole pooling with tent-pole func-
tion T. The experimental data for the streaks and bands
cumulative tent-pole function can be fitted well using the
functional form

CAN)=1+atan '[(N-1)/b], 9)

with a=1.33 and »=3.0, as shown in Fig. 4(b), from which
T(N) can be calculated. Note that the experimental data
presented in Fig. 4(b) were based on a relatively small
number of observers, and that the error bars could be sig-
nificant, so that the form of Eq. (9) and its parameters
should be taken to indicate only the general trend of the
tent-pole function.

4 VBS Measurement Procedure

This section explains the VBS algorithm, in particular how
the QIF and tent-pole pooling is applied for the measure-
ment. In the Sec. 5, measurements using the VBS algorithm
are compared with subjective assessments, using data ob-
tained from the Japanese WG4 committee. The VBS algo-
rithm development and implementation were completed
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well before the WG4 activity started, so that this presents
an opportunity to test the VBS algorithm on a set of diverse
(class IV) images that did not influence the design and pa-
rameters of the algorithm. For that reason, this section de-
scribes exactly the implementation of the general concepts
as was used for the WG4 data to be presented in Sec. 5, and
it will be noted, that this implementation in some areas
deviate slightly from the (perhaps more optimal) parameter
choices indicated earlier in this paper. In most cases, these
deviations are insignificant for the results. Note also that
the method of separation into frequency bands, described
shortly in step 6, leaves much to be desired, but does accu-
rately describe the algorithm used for the WG4 data.

Although some of the steps have been discussed in the
prior text, the entire procedure is summarized here, includ-
ing some details of the procedure that was used for the
measurements that are discussed in Sec. 5. The measure-
ment requires a printed page that contains a region of at
least 170X 170 mm that is nominally uniform. In this sec-
tion, a terminology is used where the 1-D defects (streaks
or bands) run “vertically” such that a “horizontal” trace
from left to right encounters the luminance variation caused
by the defects. Although the algorithm could be applied to
image regions that are much smaller than 170 mm in the
vertical direction, that is, in practice, not recommended
since 2-D defects, such as mottle, will more easily contami-
nate the measurement.

1. The print was scanned with an Epson Expression
10000XL flatbed scanner set to 600 dpi sampling fre-
quency. RGB data were captured at 8 bits per chan-
nel.

2. Most of the print samples were printed in mono-
chrome black only, but on some prints the gray color
had been rendered with a mixture of C, M, Y, and K.
A generic model to convert from RGB to CIE L* had
previously been derived for this scanner based on a
large set of print samples with diverse materials and
colorants. This generic model was used for all print
samples to convert the scanned image values to L*.
Under more ideal circumstances, this step would use
a conversion model that was optimized for the mate-
rials of the print.

3. The 2-D image was collapsed to a 1-D L* profile, by
averaging in the vertical direction. In practice, this
used fiducial marks to compensate for skew in the
placement of the print on the scanner.

4. The L* profile was filtered using the QIF as given by
Eq. (2) with parameters given in Table 2 for QIF 2,
with the modification that frequencies above
0.5 ¢/mm are cut off to eliminate the influence of
microuniformity defects on the measurement. The
frequency cut-off was a requirement driven by the
original purpose of the algorithm to replace a specific
visual evaluation process and may not be desirable in
general.6’13

5. The profile D(x) of the deviation from the mean was
calculated, as in Eq. (3).

6. Separation of profile into three frequency bands. This
step was not discussed previously in this paper, and
deserves a few comments of justification. Real print
samples often contain both wide and narrow streak
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defects, which may well overlap each other. For ex-
ample, a narrow light streak may be imposed in the
middle of a wide dark streak. The human eye is very
good at interpreting such a situation correctly, as two
defects. But a straightforward analysis of the D(x)
profile could interpret this as two dark streaks (of half
the width) and, if the amplitude of the light streak is
large enough, as a third light streak. If the image was
pooled with an L, norm, as in Eq. (5), the distinction
may not be severe, but when using tent-pole pooling
it is important to account correctly for the individual
defects. The profile D(x) is separated into three pro-
files, corresponding to high, medium, and low spatial
frequencies, using three normalized Gaussian convo-
lution kernels as follows.

1
Gi(x) = T exp[— (x/w;)?],

(

with w; =50 mm, w,=35 mm,

w3 =0.5 mm, (10)
Dy(x)=G,*D
Dz(x)=G2*D—G1*D (1])

D3(.X) = G3*D - Gz*D,

where * denotes the convolution operator. As already
mentioned above, the separation process is problem-
atic, for example, it may generate spurious peaks in
the separated signals. A method of cleanly separating
overlapping defects would be desirable.

7. From each of the three profiles the extrema were
identified and their absolute values were interpreted
as defect magnitudes {5, Zkl, where the index

k=1,2,3 identifies the profile. The defect magnitudes

are sorted into {5}Y,, &>, where N=N,+N,
+Nj is the total number of defects from all three pro-
files. A threshold value of 0.05 was subtracted’ from
the defect magnitudes (and if this led to a negative
value, the magnitude was set to 0).

8. The defect magnitudes {5}Y, were pooled using
Eq. (7) with parameter p=2 into the overall
impairmenti M. _

9. A nonlinear scaling is performed: VBS=3.66\M (the
factor 3.66 is arbitrary and for historical reasons
only).

5 Correlation to Subjective Assessments

This section presents a comparison of predictions by the
VBS algorithm with subjective assessments of print
samples obtained from actual printers, including a mix of
electrophotographic (EP) and ink jet (IJ) technologies. The
print samples and results of the subjective analysis were
kindly provided by the SC28/WG4 committee of Japan.
The Japanese WG4 committee took charge of generation of

"This is a slight deviation from the general concept, with minor impact. The value
0.05 was chosen based on experts’ examination of print samples that appeared per-
fect.

“This is also a slight deviation from the more optimal use of Eq. (9) with p=1.55.
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Table 3 Overview of the characteristics of the sample.

Mixed Defects

Total Sample

Group H \% Invisible Both 2-D Count
Vertical — 20 6 — — 26
Horizontal 2 — 6 — — 8
] — 15 5 — — 20
EP 2 5 1 6 1 15
Mixed — — — 6 1 7

The first column shows the grouping used for the analysis in Sec. 5.2. Columns 2—6 correspond to the
tags assigned by the WG4 committee according to the visibly dominating defect. The last column
shows total number of samples in the group. For example, the samples in the 2nd row (Vertical) are
those that can be expected to correlate well with vertical VBS measurements, which includes both
those samples with tagged “V” and those with nearly invisible defects.

the print samples for an experiment that verifies image
quality attributes for ISO/IEC 24790 development. The
SC28/WG4 committee of Japan, the United States, the
Netherlands, South Korea, and China participated in the
subjective evaluations. The observers were predominantly
image quality experts and trained observers.

The sample set consisted of 35 prints (originally 38, but
3 prints were omitted by the WG4 committee due to irregu-
larities with the prints and/or their assessment). The sample
set was diverse, including samples dominated by streaks, as
well as samples dominated by periodic banding. The
samples had been tagged by the Japanese WG4 committee
according to marking technology and the nature of the vis-
ibly dominating defects on the prints, as follows: “V”
=1-D defects (streaks or bands) in the vertical direction,
“H”=1-D defects (streaks or bands) in the horizontal di-
rection, “Both” =1-D defects in both vertical and horizon-
tal directions, “2D” =random 2-D noise such as mottle, and
“Invisible” =no significant visible defects. These tags were
unknown to the observers, and not used until the data
analysis. Table 3 gives an overview of the sample charac-
teristics, and explains how the samples were grouped for
the analyses described in Sec. 5.2.

5.1 Subjective Methods

Two subjective assessment methods were used: categorical
scaling and anchored scaling. The categorical scaling used
five categories: (1) “Banding is imperceptible,” (2) “Band-
ing is slightly perceptible,” (3) “Banding is perceptible but
not annoying,” (4) “Banding is annoying,” (5) “Banding is
very annoying.” The anchored scaling used a print with low
levels of defects as anchor with scale value 25, and a print
with high levels of defects as anchor with scale value 80. In
both cases, observers were asked to assess the overall qual-
ity with respect to streaks and bands. The correlation be-
tween the results of the two methods was very high, and the
small differences would not affect the conclusions of this
paper; therefore, this section presents only the data from
one of the methods—the anchored scaling method. How-
ever, the categories just listed give the reader a good sense
of the range of quality of the print samples. Note that the
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anchored scale value of 25 corresponds to category 1, while
anchored scale value of 80 corresponds to category 5.

5.2 Comparison of VBS to Subjective
Results

Real print samples will typically contain streaks and bands
defects in both directions, as well as 2-D noise such as
mottle. This complicates the subjective assessment in the
case where the observer is asked to assess only streaks and
bands. First, if mottle levels are sufficiently high relative to
the streaks and bands, then mottle may mask the perception
of streaks and bands. Second, the interaction of vertical and
horizontal 1-D defects may give an appearance of two-
dimensionality, which could lead the observer unintention-
ally to disregard some of the streaks and bands.

From a measurement perspective the presence of these
multiple defects is less of an issue because, as mentioned
earlier, when large image regions are used for the analysis,
typical mottle defects will not significantly impact the pro-
file average. However, for prints that contain both horizon-
tal and vertical 1-D defects, the question of how the mea-
sures for each direction are combined into a single
assessment, is outside the scope of the VBS algorithm.

To analyze the data, the samples were grouped as shown
in Table 3. The “Vertical” group contains those samples that
do not have visibly significant defects other than in the
vertical direction, including those samples that do not have
visibly significant defects at all. The samples in this group
can meaningfully be analyzed by application of the VBS
algorithm in one direction. Similarly for the “Horizontal”
group, but in this case the VBS algorithm is applied in the
other direction. Figure 5(a) shows the performance of the
VBS algorithm on these two groups. Note that the samples
tagged “Invisible” are included twice in this graph, once for
each VBS direction. The summary statistics for a linear
regression between VBS and the subjective ratings are
given in Table 4. Spearman’s rank order correlation is 0.93,
and the relationship is nearly linear with an adjusted R? of
0.87. Given that this sample set has defect diversity of class
IV, the performance is quite satisfactory. Note also that
some noise is introduced, since the VBS data measures
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Fig. 5 Subjective ratings versus VBS for samples dominated by 1-D defects in a single direction,
including samples with no significant defects at all: (a) the line is fitted with the outlier “A” removed and
(b) the same as (a), but stratified by marking technology. The subjective data are not available in a
form that enables rigorous calculation of error bars; however, comparison of results obtained from five
different observer groups indicate an agreement between group averages within +5 to 7 units.

only one direction (the one presumed to dominate), while
the subjective assessment takes both directions into ac-
count. There is perhaps one data point that could be con-
sidered an outlier: The point labeled “A” (with the largest
VBS value). This point received a subjective rating close to
the maximum anchor value, and even though observers
were allowed to give ratings beyond the anchor values, it
can be expected that there is some resistance for the observ-
ers to do so. Omitting this point from the regression,
changes the adjusted R? and Spearman’s rank correlation
only slightly, but reduces the root mean squared error
(MSE) from 6.9 to 6.1. Figure 5(b) shows the same data
stratified by the marking technology, and regression results
for each technology are given in Table 4. Note that the
correlation between VBS and subjective ratings is particu-
larly good for the ink jet technology samples.

As seen from Table 3 there are seven samples in the
“mixed” group. One of these has 2-D defects, such as
mottle, while the other six have streaks and/or bands in
both the vertical and horizontal direction. Figure 6 shows
the subjective ratings versus VBS for these samples. For
each sample, VBS is evaluated twice, once in each direc-
tion. Compared to the regression from the pure 1-D defects
of Fig. 5, these data show a clear tendency for the VBS
ratings to be higher (worse) than the subjective ratings.
This tendency is the opposite of what could be expected,
given that VBS is supposed to be rather insensitive to 2-D
defects, and given that for each data point VBS is evaluated
only in one of the two directions, while the subjective rat-
ings take both directions into account simultaneously. The
explanation for this behavior is not known at this point, and
it may require a larger sample set to reach an understanding

Table 4 Summary statistics for the prediction of subjective ratings by VBS, as shown in Fig. 5, with the
95% confidence intervals given for the intercept and slope.

Spearman’s
Root  Adjusted rank
N Intercept Slope MSE R? correlation
Streaks/bands in 34 15.0[9.9,20.1] 13.9(12.0,15.8) 6.9 0.87 0.93
single direction
(HorV)
Streaks/bands in 33 12.8([8.0,17.6] 15.1[13.2,16.9] 6.1 0.90 0.92
single direction
(HorV),
one outlier removed
By marking (1J) 25 12.0[7.9,16.2] 16.3[14.6,18.0] 4.9 0.94 0.96
By marking (EP) 9 14.8[-25,32.1] 123([7.3,17.2] 7.0 0.81 0.54
Journal of Electronic Imaging 011017-12 Jan-Mar 2010/Vol. 19(1)
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Fig. 6 Subjective ratings versus VBS for samples with defects of a
mixed type, not purely one dimensional, whose ratings are not ex-
pected to be predicted well by VBS.

of this issue. Potential explanations may involve masking,
as described at the beginning of this section.

6 Discussion

The philosophy behind the algorithm discussed in this pa-
per is to directly address each of the three important stages
of human visual assessment of streaks and bands: (1) con-
struction of the perceived image, (2) identification and
quantification of individual defects in the perceived image,
and (3) the conscious integration of the set of defects into a
single numerical value that represents the overall quality of
the print. In reality, the VBS algorithm has several obvious
limitations and to some extent violates the distinction be-
tween the three stages. To construct the perceived image
the VBS algorithm uses a simple CSF-like filter, which
ignores more complex aspects of the human visual system;
for example, it ignores masking caused by 2-D noise in the
print. Furthermore, to achieve a clear-cut way of assigning
a visual magnitude to each defect, VBS uses a QIF rather
than a CSF, which means that the filtered image cannot
necessarily be interpreted as the “perceived image.” In
practice, however, there is not any one CSF that suits all
viewing conditions, and the QIF is nothing other than a
CSF tuned for this particular purpose. When prints are
viewed at normal viewing distance of about 30 to 40 cm,
an edge-to-edge gradient of 1 L* difference is barely per-
ceptible, while 2-mm periodic banding is visible at much
lower amplitudes. Therefore, for streaks and bands assess-
ment it is critical that the QIF maintains the bandpass na-
ture of the CSF, where low spatial frequencies are strongly
suppressed. Other than that, the QIF will depend on numer-
ous details, for example on the size of the inspected image
region, as illustrated by Fig. 3.

As for stage 2, the merit of the algorithm is that it uses
stage 1 with the QIF to provide a logical foundation for
how to assign “visual magnitudes” to each individual de-
fect. One obvious limitation of the algorithm during stage
2, is that the separation of the L* profile into several fre-
quency bands will not be able to accurately capture all de-
fect configurations and, as mentioned, in some cases can
lead to spurious defect identifications.
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Finally for stage 3, it is noteworthy that the relationship
between VBS and the subjective rating is nearly indepen-
dent of whether the print is generated by 1J technology
(prone to streaks) or EP (prone to bands), which may be a
sign that the defect pooling is capturing some of the right
effects of the human quality judgment. It is indeed a fun-
damental assumption of the VBS approach that the impact
of periodic defects such as bands can be modeled as unre-
lated strealike defects, and it would be desirable in future
work to test this assumption directly. It is important to un-
derstand that the tent-pole defect pooling does not represent
the (subconscious) visual masking of defects by each other.
Rather, it aims to represent a conscious “mental masking”
during the judgment process. In reality, there may be a gray
area between visual masking and mental masking, but there
are cases where the masking is clearly mental. The experi-
ment to determine the tent-pole function was quite limited
in scope. In particular, it addressed directly only the case
where multiple defects of identical magnitude were being
pooled; furthermore, the number of observers was so small
that meaningful confidence intervals were not determined.
It would be worthwhile to conduct experiments to probe
pooling of streaks and bands defects in greater detail, in-
cluding the more realistic situation where defect amplitudes
are not identical.

The VBS algorithm is sensitive only to L* variations,
but based on the principles already described, it would be
straightforward to extend the algorithm to be able to ana-
lyze full-color variations. For many printing systems,
streaks and bands are usually associated with L* variations
that tend to dominate the perceived defects, in which case
VBS is sufficient, but situations do arise where sensitivity
to a* and b* is necessary, for example, in cases of low-
frequency banding with slight hue changes.

The use of the human CSF in algorithms for print qual-
ity is by no means new. The slight variation introduced by
the QIF, as opposed to the CSF, may also be relatively
insignificant, compared to the variations seen in the CSF as
a function of viewing conditions. Thus, the question is
which part of the VBS algorithm is most significant for
obtaining reasonable agreement with subjective assess-
ments. It would be desirable for future work to explore the
relative significance of, for example, the QIF and the tent-
pole pooling method. To do so will require significantly
larger image sets and observer pools, and therefore the ex-
periments would be more suitable for softcopy than hard-
copy assessments.

As a final critique of this approach to assessment of
printer image quality, it should be considered to what extent
the measurement is relevant, even if it did correlate per-
fectly with the subjective assessments of the test charts.
This questions leads back to stage 3 of the observer’s judg-
ment of overall quality. How does an observer judge the
overall quality of a nominally uniform page, containing
streaks and bands defects—what are the value perceptions
that form the basis for the assessment? Without a context,
such as a real customer document in which to evaluate the
quality, it is difficult to perform, or at least to understand,
the evaluation. For this reason, some of the subjective ex-
periments described in this paper attempted to give a con-
text by directing the observer to imagine that the image
would be used for a document cover page. Nevertheless,
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printer manufacturers are in strong agreement that it is im-
portant to establish methods and standards for this kind of
attribute assessment, and it is clear from numerous subjec-
tive experiments, including those by the SC28/WG4 com-
mittee, that such assessments are fairly precise and repro-
ducible.
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