Integrated micro-endoscopy system for simultaneous fluorescence and optical-resolution photoacoustic imaging

Peng Shao
Wei Shi
Parsin Hajireza
Roger J. Zemp
Integrated micro-endoscopy system for simultaneous fluorescence and optical-resolution photoacoustic imaging

Peng Shao, Wei Shi, Parsin Hajireza, and Roger J. Zemp
University of Alberta, Department of Electrical and Computer Engineering, Edmonton, Alberta, T6G 2V4, Canada

Abstract. We present a new integrated micro-endoscopy system combining label-free, fiber-based, real-time C-scan optical-resolution photoacoustic microscopy (F-OR-PAM) and a high-resolution fluorescence microscopy endoscopy system for visualizing fluorescently labeled cellular components and optically absorbing microvasculature simultaneously. With a diode-pumped 532-nm fiber laser, the F-OR-PAM sub-system is able to reach a resolution of ∼7 μm. The fluorescence subsystem, which does not require any mechanical scanning, consists of a 447.5-nm-centered diode laser as the light source, an objective lens, and a CCD camera. Proflavine is used as the fluorescent contrast agent by topical application. The scanning laser and the diode laser light source share the same light path within an optical fiber bundle containing 30,000 individual single-mode fibers. The absorption of proflavine at 532 nm is low, which mitigates absorption bleaching of the contrast agent by the photoacoustic excitation source. We demonstrate imaging in live murine models. The system is able to provide cellular morphology with cellular resolution co-registered with the structural information given by F-OR-PAM. Therefore, the system has the potential to serve as a virtual biopsy technique, helping visualize angiogenesis and the effects of anti-cancer drugs on both cells and the microcirculation, as well as aid in the study of other diseases.© 2012 Society of Photo-Optical Instrumentation Engineers (SPIE). [DOI: 10.1117/1.JBO.17.7.076024]

Keywords: optical-resolution photoacoustic microscopy; fluorescent microscopy.

1 Introduction

Optical-resolution photoacoustic microscopy (OR-PAM) is capable of sensing endogenous optical absorption in biological bodies with fine lateral resolution provided by optical focusing. Pioneered by Maslov et al.,1 OR-PAM imaging has been successfully applied to both structural and functional imaging.2–9 Since both oxy- and deoxyhemoglobin are the dominant absorbing components in blood, the distribution of optical absorption, detected by the OR-PAM system, can be used to recover oxygen saturation (SO2). For example, Hu et al.10 used OR-PAM to image SO2 with capillary-level resolution in mouse brain with dual-wavelength measurements. Hu et al.11 also imaged the healing process of laser-induced microvascular lesions in a small animal model in vivo in terms of morphological and SO2 mapping. These studies demonstrated the capability of OR-PAM as a potential powerful tool in microcirculatory physiology and pathophysiology.

Recently our group reported the first label-free, fiber-based OR-PAM (F-OR-PAM) imaging systems.12,13 The system retains many of the powerful properties of our previously proposed table-top system.14 It takes advantage of a flexible image guide and has significant potential to serve as a new micro-endoscopic imaging technique for clinical use. Visualization of microvasculature in living mouse ears was demonstrated with the system.

Fluorescence contrast high-resolution fiber-optic microendoscopy (HRME) was introduced by Muldoon et al.15 This technique, which is inspired by the goal of virtual histopathology, utilizes a microscopic setup to image fluorescently-labelled cellular structures with lateral resolution on the order of microns. Fluorescent signals excited by a wide-field light source are magnified and sensed by a CCD camera. Rosbach et al.16 justified the feasibility of the imaging modality in evaluating lymph nodes from breast cancer patients with morphological variation. Muldoon et al.17 verified the validity of the technique in assisting diagnosis of oral lesions by observing and analyzing morphology of epithelia in human oral cavities.

In the present paper, we propose a combined system based on the HRME technique and our previous F-OR-PAM system, with the purpose of engineering a hybrid imaging platform to visualize capillary vasculatures along with cellular context.

2 Methods

The dual modality imaging platform consists of two modules (Fig. 1). The F-OR-PAM system employs a 532-nm diode-pumped Ytterbium-doped fiber laser system as the optical source (GLP-10, IPG Photonics Corporation). Pulse repetition rate (PRR) of the laser system is tunable within the range from 20 k to 600 kHz. Pulse duration is ∼1 ns and the pulse energy can reach up to 20 μJ. A pair of 2D galvanometer scanning mirrors (6230H, Cambridge Technology, Inc.) is utilized to accomplish optical scanning. The scanners are driven by two analog sinusoidal waves (x- and y-direction) from a function generator. The scanned beam is then focused by an objective lens (f = 18 mm, K1603703, Mitutoyo Co.) and directed into an image-guide fiber (FIGH-30-850, Myriad Fiber Imaging Tech., Inc.). Photoacoustic signals are sensed by a 3.5-MHz transducer (19-mm focus, 6-mm active element, f# = 3.17, CD International Technology, Inc.), amplified, and pre-filtered by.
a pulser-receiver (5900 PR, Olympus NDT, Inc.) and then digitized by a 12-bit, 8-channel, high-speed digitizer (CS8289, Gage Applied Technologies, Inc.) along with the higher-frequency (x-axis) scanning feedback signals. For the fluorescent sub-system, a 475.5-nm-centered diode laser is utilized as the excitation light source. A standard fluorescent filter unit is employed in the system. An exciter band-pass filter with a center wavelength (Thorlabs, Inc.) of 445 nm is utilized. A 475-nm cut-off dichroic mirror (Chroma Technology Corp.) is used to reflect excitation light while transmitting excited fluorescence signals back. Excited fluorescence signals travel back through the image guide, reflected by the beam splitter positioned above the objective lens, and then follow the light path to the scientific-grade, high-resolution Electron-Multiplied CCD (EM-CCD, Andor Technology). To rule out noise in the fluorescence signals, we use a 500-nm long-pass barrier filter (Thorlabs, Inc.) between dichroic mirror and tube lens. Pixel size of the CCD is 8 μm x 8 μm and there are 1002 x 1004 pixels in total. The objective lens and the tube lens function together as a microscopic system. We use a plano-convex lens with a focal length of 150 mm (Thorlabs, Inc.) as the tube lens and therefore the magnification factor of the system is ∼8.3. Proflavine, an FDA-approved drug for human medical use, is utilized as the contrast agent. In soft tissue, proflavine stains nuclei. This is important, since nuclei are often enlarged in cancer cells. Since the 532-nm laser is away from the absorption spectrum of Proflavine, no fluorescence signals will be generated by our OR-PAM optical source.

The image guide we used, which consists of 30,000 single-mode fibers in a bundle, has a diameter of ∼800 μm. Considering the magnification factor of the microscope system, each single fiber covers 4.7 pixels of the EM-CCD on average, which is above the Nyquist limit.

The software package for data acquisition and data transfer is written in C/C++, and data processing and analysis is conducted with Matlab (Mathworks, Inc.).

3 Results

3.1 System Characterization

Figure 2 illustrates the system characterization of the imaging system. Figure 2(a) shows the entire footprint of the image guide, which has a diameter of ∼800 μm. When the fluorescent imaging module is well focused, single elements of the image guide can be visualized, as is shown in Fig. 2(b). This demonstrates that the module is capable of imaging features at a cellular level. To examine the lateral resolution of the fluorescent module, we imaged a 1951 United States Air Force resolution target (USAF 1951). Features with a dimension of 4.38 μm can be resolved, which suggests that the imaging module has a lateral resolution that is on the order of the F-OR-PAM subsystem. For properties of our F-OR-PAM module, readers can refer to Ref. 12 for details. Figure 2(d) and 2(e) are images of a carbon fiber network imaged with the fluorescent imaging module and the F-OR-PAM module sequentially. Consistent contents are visualized in the two images.

3.2 In Vivo Imaging

In vivo studies were conducted to demonstrate imaging capability of our system. An ear of a 7-week-old SCID hairless outbred...
mouse was imaged for in vivo studies. Experimental procedures followed the laboratory animal protocol approved by the University of Alberta Animal Use and Care Committee. An animal anesthesia system was utilized while image data were collected. Before the imaging experiment, we topically applied proflavine-saline solution with a concentration of 0.01% (w/v) to the ear skin surface. To avoid contamination of fluorescence image by our fiber laser, the fluorescent and F-OR-PAM images were taken sequentially in a few minutes after the dye was applied. But acquisition of the two images can be interlaced. The measured power of the excitation 455-nm light at distal end of the image guide is around 0.45 mW. The 532-nm laser works with PRR of 160 kHz. The average power measured at the distal end when conducting F-OR-PAM imaging is around 35 mW. Results of the experiment are shown in Fig. 3. The scanning frequency of the galvanometer mirror system is 400 Hz and 1 Hz for the x- and y-axis, respectively. With the laser repetition rate of 160 kHz, the frame rate of the F-OR-PAM imaging sub-system is two frames per second, resulting in images with 160,000 points. Figure 3(a) and 3(b) are the F-OR-PAM maximum amplitude projection (MAP) and fluorescent images of the mouse ear obtained at the same location, respectively. A two dimensional Hessian-based Frangi vesselness filter was used for data processing.18 Figure 3(c) is the coregistered image. Figure 3(d) is a fluorescence image of normal human oral mucosa taken with our system. After topical application of the fluorescent dye, the distal end of the image guide was placed in contact with normal human oral mucosa to acquire fluorescent images. Staining of nuclei and cell membrane can be visualized clearly in the image.

4 Discussion

We demonstrated a hybrid imaging system for both F-OR-PAM-based vasculature and fluorescently labeled cellular structure imaging. We further provide cellular information on the micron scale based on the OR-PAM system reported by our group.12,13 We believe that the concept shown in the present paper may lead to a more powerful tool for biomedical imaging. A potential application of our system is the study and diagnosis of early-stage cancer. Whereas F-OR-PAM can provide images of vasculature (and potentially hemoglobin oxygenation) in tissue, cellular information may provide morphological context, which is crucial for researchers and clinicians. For example, morphological anomalies in tumor tissue and variations in the microvasculatures due to cancer angiogenesis can confirm each other. This enables the technique to serve as a form of noninvasive virtual biopsy for identification of superficial tumor tissues in human cavities in diagnosis by clinicians.

Estimate of SO2 at capillary level, which is not possible with pure fluorescence imaging, can also be accomplished with dual-wavelength OR-PAM imaging.10 This could help reveal the metabolic status of the cancer tissue, which is proven to be of importance for both fundamental studies and clinical practices. Another example is vasa vasorum imaging. Angiogenesis in this vascular layer of the lumen of atherosclerotic vessels has been correlated with plaque vulnerability. Visualizing the vessels could help provide one determinant of plaque vulnerability while fluorescent labeling could target immune cell invasion as an additional surrogate measure of rupture vulnerability.

We would like to note that although the fluorescent dye we use for the present project is not cell specific, various dye materials can be utilized to label different cells, cell markers, or subcellular features in the soft tissue to generate contrast between tissue components—for example, the amine-reactive derivatives of fluorescein isothiocyanate (FITC), which is widely used for various applications such as antibody labeling in immunofluorescence. The FDA-approved dye indocyanine green (ICG) has the advantage of near-infrared excitation and could also be considered as a myriad of existing and emerging fluorescent reporters. Investigation of these dyes is warranted in our future work for novel potential applications.

Acknowledgments

We gratefully acknowledge funding from the Canadian Cancer Society (TFF 019237, TFF 019240, CCS 2011-700718), NSERC (355544-2008, 375340-2009, STPGP 396444), the Terry Fox Foundation, the Alberta Cancer Research Institute (ACB 23728), the Canada Foundation for Innovation Leaders Opportunity Fund (18472), Alberta Advanced Education & Technology Small Equipment Grants Program (URSI09007-SEG), Microsystems Technology Research Initiative (MSTRI RES0003166), and University of Alberta Startup Funds. We also acknowledge student scholarship support from Alberta Ingenuity, Alberta Innovates, NSERC, and the China Scholarship Council.

References