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Abstract

Significance: Laser speckle contrast imaging (LSCI) gives a relative measure of microcirculatory
perfusion. However, due to the limited information in single-exposure LSCI, models are inaccurate
for skin tissue due to complex effects from e.g. static and dynamic scatterers, multiple Doppler
shifts, and the speed-distribution of blood. It has been demonstrated how to account for these
effects in laser Doppler flowmetry (LDF) using inverse Monte Carlo (MC) algorithms. This allows
for a speed-resolved perfusion measure in absolute units %RBC × mm/s, improving the physio-
logical interpretation of the data. Until now, this has been limited to a single-point LDF technique
but recent advances in multi-exposure LSCI (MELSCI) enable the analysis in an imaging modality.

Aim: To present a method for speed-resolved perfusion imaging in absolute units %RBC ×
mm/s, computed from multi-exposure speckle contrast images.

Approach: An artificial neural network (ANN) was trained on a large simulated dataset of
multi-exposure contrast values and corresponding speed-resolved perfusion. The dataset was
generated using MC simulations of photon transport in randomized skin models covering a wide
range of physiologically relevant geometrical and optical tissue properties. The ANN was evalu-
ated on in vivo data sets captured during an occlusion provocation.

Results: Speed-resolved perfusion was estimated in the three speed intervals 0 to 1 mm∕s,
1 to 10 mm∕s, and >10 mm∕s, with relative errors 9.8%, 12%, and 19%, respectively. The
perfusion had a linear response to changes in both blood tissue fraction and blood flow speed
and was less affected by tissue properties compared with single-exposure LSCI. The image
quality was subjectively higher compared with LSCI, revealing previously unseen macro- and
microvascular structures.

Conclusions: The ANN, trained on modeled data, calculates speed-resolved perfusion in abso-
lute units from multi-exposure speckle contrast. This method facilitates the physiological inter-
pretation of measurements using MELSCI and may increase the clinical impact of the technique.
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1 Introduction

Laser speckle contrast imaging (LSCI) is a noninvasive measurement technique for assessing
spatial perfusion maps of the microcirculation.1 When coherent laser light scatters from moving
red blood cells (RBCs) in tissue, it changes frequency due to the Doppler effect. Backscattered
light from the tissue will therefore create a fluctuating speckle interference pattern on the camera
sensor. These fluctuations cause motion blur in the recorded image, which can be quantified
as the local contrast in a region of pixels. Several mathematical models have been proposed
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to establish a relation between the speckle contrast and blood flow speed or perfusion (speed ×
concentration). However, the amount of Doppler shifted light and the distribution of Doppler
frequencies can affect a single-exposure contrast value in similar ways. This contributes to limit
LSCI to relative estimates of perfusion in arbitrary units. It has been demonstrated that perfusion
by LSCI follows a nonlinear and unknown relation to perfusion measured by laser Doppler
flowmetry (LDF)2–5 and to actual tissue perfusion.6

Multi-exposure laser speckle contrast imaging (MELSCI) quantifies how the speckle contrast
decreases with increasing exposure time, and allows for more realistic models of light–tissue
interaction and speckle decorrelation when estimating perfusion.7 However, the mathematical
models proposed for estimating perfusion from MELSCI are based on several assumptions,8

specifically that photons undergo at most one dynamic scattering event, and that the electric
field autocorrelation function can be approximated as either a Gaussian or Lorentzian
distribution.9 These assumptions are not valid for most tissues, as discussed in Refs. 10 and 11.
Furthermore, using these models for analyzing MELSCI data yields relative perfusion estimates
expressed in arbitrary units. This makes physiological interpretation difficult.

An alternative technique is to use a computational model based on Monte Carlo (MC) sim-
ulations in multilayered tissue models, where the limitations in the abovementioned assumptions
are not necessary, and more complex light-tissue interactions can be considered. Specifically,
in LDF it has been demonstrated how this, together with an inverse optimization algorithm,
can be used to compute speed-resolved perfusion in absolute units %RBC × mm/s.12–14 By
decomposing the perfusion into distinct speed components, each associated with a specific range
of physiologically relevant speeds, more detailed and physiologically relevant information about
the microcirculation is obtained. For example, this has been used to detect a reduced nutritive
capillary flow in patients with type 2 diabetes.15

The drawback of inverse methods is the slow speed of the optimization when fitting the
modeled data to measurements. Although this is viable for single-point LDF, it is too slow for
an imaging modality such as MELSCI. To address this problem, machine learning has recently
been proposed to train artificial neural networks (ANNs) that can estimate perfusion from multi-
exposure contrast.2 Similar techniques have been used to estimate blood oxygen saturation from
spectral data.16,17 This offloads the heavy computations to the training stage of the network and
enables real-time estimations of microcirculation properties in imaging modalities.18

The aim of this study is to develop a method for speed-resolved perfusion imaging, computed
from MELSCI data in the physiologically relevant unit %RBC × mm/s. The method utilizes
ANN based on MC simulations of realistic complex tissue models accounting for expected
variations in relevant skin properties. The result of the method is demonstrated in an arterial
occlusion-release provocation.

2 Materials and Methods

2.1 Tissue Model

To generate realistic training data for the ANN, MC simulations of the light-tissue interaction in
a three-layer skin tissue model were performed. This process has been described in detail
elsewhere6,16 and will only be summarized here in the context of MELSCI. Optical properties
used in the model are relevant for the laser wavelength 780 nm. The first layer in the tissue model
is a bloodless epidermis layer with variable thickness (tepi) and melanin concentration. The
absorption coefficient of the epidermis layer (μa;epi) is dependent on melanin and is generally
low at the used laser wavelength. The second and third layers are dermis layers with variable
blood tissue fractions, blood speed distributions, scattering coefficients, and vessel diameters.
The upper dermis layer has a fixed thickness of 0.2 mm, and the lower dermis layer is infinite.
The reduced scattering coefficient (μ 0

s) is the same in all layers. The absorption coefficient of the
dermis layers (μa;dermis) is given by their blood tissue fraction (cblood), oxygen saturations (Soxy),
and vessel diameters (dvessels), where the latter affects the absorption through the vessel packaging
effect.19,20 The parameters cblood, Soxy, and dvessels are modeled to be different in the two dermis
layers, where the actual values are calculated from a randomized average value and a randomized
difference parameter, to ensure the parameters do not differ too much between the layers.
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The parameters of interest in the 100,000 randomized training models are summarized in
Fig. 1. The average values for cblood, Soxy, and dvessels are given in the histograms. The last
histogram shows the average speed hvRBCi of the RBC speed distributions, described in more
detail below. The choice of the distributions was based on three principles; (1) the range of the
distributions should cover essentially all expected values in skin tissue for all skin sites and
all skin types; (2) allow for less probability of parameter values that are rarely expected, such
as μ 0

s < 0.5 mm−121; (3) have higher probability for ranges where a small change has a large
effect on the contrast data, thus exponential decay in the histograms of many of the parameters
as Beer–Lambert’s law predicts lower absolute change for high μa or large path-lengths (related
for example to high tepi).

When modeling speckle contrast, it is common to assume either a Gaussian or Lorentzian
distribution for the electric field autocorrelation function,9,22 but the validity of both assumptions
has been questioned.11 Here, we instead model the speed distribution of RBCs, cRBCðvÞ, directly
as a weighted sum of 10 uniform distributions from 0 mm∕s to exponentially increasing top
speeds, representing vessels with parabolic flow profiles with 10 different average speeds. The
weights are randomized for each tissue model to create variations in the shape of the distribution.
Examples of speed distributions are presented in Fig. 2. Additional details can be found in Ref. 6.

2.2 Doppler Histogram Calculation

Tissue model simulations were performed for calculating Doppler histograms (the optical
Doppler spectrum) as previously described in detail.13 The simulations and calculations are
summarized in this section.

Fig. 1 Normalized histograms of skin parameter distributions in the tissue models. The x -axes are
scaled to remove the 1% upper tail.

Fig. 2 Examples of RBC speed distributions cRBCðvÞ, for three different mean speeds as pre-
sented in the legend. The distributions were normalized to have a total probability of 1.
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MC simulations were performed with varying epidermis thickness and tissue scattering cov-
ering the ranges found in Fig. 1 for these parameters. In each MC simulation, the total path length
of each photon in each of the three layers was stored and used to calculate path-length distri-
butions in each layer. For a given set of the model parameters tepi and μ 0

s , the path-length
distribution in each layer was interpolated from the simulated path-length distributions. Using
the path-length distribution in each layer, Beer–Lambert’s law was applied to add the absorption
effect of μa;epi and μa;dermis, modifying the path-length distributions. These modified path-length
distributions were the first input to the calculation of the Doppler histogram of the model.

A single-shifted Doppler histogram was calculated for light Doppler shifted once by a red
blood cell with a certain speed. This was done analytically as described in the appendix of
Ref. 13, assuming a random angle between the light and the direction of the red blood cell and
a scattering angle based on the Gegenbauer kernel phase function.23 The phase function param-
eters were set to gGk ¼ 0.948 and αGk ¼ 1.0, resulting in an anisotropy factor of 0.991.24 The
Doppler histogram for light shifted n times was calculated as the cross-correlation of the single-
shifted Doppler histogram with itself n − 1 times. Probability distributions of the number of
Doppler shifts were given by Poisson distributions based on the pathlengths and fraction of red
blood cells. The fact that blood is confined in distinct blood vessels rather than being evenly
distributed in the layer, i.e. the vessel packaging effect, was also accounted for when calculating
the distribution of the number of Doppler shifts.

Finally, the speed distribution, the path-length distributions, the distributions of the amount
of Doppler shifts, and the Doppler histograms for various numbers of Doppler shifts and speeds,
were used to calculate a final Doppler histogram HðfÞ. Although the entire process is complex,
the calculation scheme is efficient, and it takes less than a millisecond to calculate a Doppler
histogram for a specific set of model parameters.

2.3 Speckle Contrast Calculation

The Doppler histogram HðfÞ obtained as described in the previous section was converted into
multi-exposure contrast KðTÞ using a mathematical framework that is thoroughly described in
Refs. 6 and 25. In short, the electric field autocorrelation function gð1ÞðτÞ was obtained from the
Doppler histogram using the Wiener–Khinchine theorem

EQ-TARGET;temp:intralink-;e001;116;359gð1ÞðτÞ ¼ jF−1fHðfÞgj; (1)

where F−1 is the inverse Fourier transform. The contrast was then obtained as26

EQ-TARGET;temp:intralink-;e002;116;314K2ðTÞ ¼ 2β

T

Z
T

0

jgð1ÞðτÞj2
�
1 −

τ

T

�
dτ; (2)

where the coherence factor β was set to one, assuming a calibrated system with K ¼ 1 for a static
target.

The contrast computed by this method is noise-free, making it inappropriate for training
models that should be applied to real data containing noise. Therefore, a noise component
KnoiseðTÞ was added to the simulated contrast data before training the neural network. The noise
component model has been described and validated in Ref. 2. In summary, speckle simulations
showed that the noise for each exposure time T could be modeled as a sequence of random
contrast offsets depending on the average contrast over all exposure times hKðTÞiT and the noise
value at the previous exposure time, i.e.,

EQ-TARGET;temp:intralink-;e003;116;162KnoiseðTÞ ¼ hKðTÞiT ×
� ξTη1; T ¼ 1

Knoise

�
T
2

�
þ ξTηdiffðTÞ; T ¼ ½2;4; 8;16; 32;64� ; (3)

where ξT are random numbers drawn from a normal distribution with zero mean and unit
variance, and the constants η1 and ηdiffðTÞ were determined from the speckle simulations and
dependent on the number of speckles per detector pixel.
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2.4 Biological Zero

When using the laser Doppler technique in measurements at low-flow or zero-flow conditions in
skin tissue, for example during brachial occlusion, we have observed a residual high frequency
energy in the Doppler power spectrum (ongoing work), corresponding to the well-known bio-
logical zero (BZ) effect.27,28 During occlusion, BZ partially originates from Brownian motion of
RBCs and from the redistribution of blood between vessels, possibly including reverse flow in
the capillaries.29 In addition, movements of macromolecules in the interstitial space contribute to
the BZ.30 Due to the small size of these macromolecules, the scattering angles are large compared
to scattering from RBCs, resulting in large Doppler shifts. This addition to the power spectrum
cannot be explained by Doppler shifts from RBCs, regardless of which speed distributions of the
RBCs are used. Furthermore, the residual energy is not present when measuring on flow of
phantoms perfused with whole blood,14 making us confident in assuming that it does not origi-
nate from the blood itself, but from some kind of other tissue movements, well in line with the
movement of macromolecules. We observe the same effect when using the MELSCI technique.
Similar to the residual we observe in the Doppler spectrum, the shape of the contrast curve in
measured data during occlusion cannot be explained by any realistic speed distribution of the
RBCs. However, since we observe the same phenomenon using both LDF and MELSCI, we are
confident that it does not originate from faulty calibrations or instrument noise.

We must account for this macromolecule effect on BZ when generating training data from the
skin models, otherwise, the training data will not be valid for low-flow conditions. This can be
done by adding a BZ component HBZ to the Doppler histogram before computing the contrast.
This was empirically modeled as

EQ-TARGET;temp:intralink-;e004;116;465HBZðfÞ ¼
�
0 for f ¼ 0

10ξoffsetþfξslope for f > 0
; (4)

where ξoffset ∈ N ð−5.3; 0.125Þ and ξslope ∈ N ð−5.2 × 10−5; 6 × 10−6Þ represent random num-
bers from normal distributions N ðμ; σÞ. These distributions are based on analysis of laser
Doppler spectra recorded during occlusion provocations in a substudy of the Swedish cardio-
pulmonary bioimaging study (SCAPIS).31 Note that HBZ has a negligible additive effect on
the Doppler histogram under normal flow conditions.

2.5 Perfusion

Speed-resolved perfusion can be computed from the modeled speed distribution as

EQ-TARGET;temp:intralink-;e005;116;315P½vmin;vmax� ¼
Z

vmax

vmin

vcRBCðvÞdv; (5)

where the perfusion corresponds to the speed-range ½vmin; vmax�, and cRBCðvÞ is the speed
distribution describing the concentration of RBCs moving with speed v. This distribution sums
to the total tissue RBC fraction and has the unit %RBC/(mm/s). The unit of speed-resolved
perfusion is thus %RBC × mm/s, i.e. concentration × speed. In this study, we present speed-
resolved perfusion in the ranges 0 to 1 mm∕s, 1 to 10 mm∕s, and >10 mm∕s. Additionally,
the total perfusion, i.e. the sum of all three speed components, is presented.

When calculating the modeled perfusion Ptrue, the contribution from each skin layer is con-
sidered so that Ptrue reflects the sampling volume. For example, if the epidermis thickness is
increased but blood tissue fractions and speed distributions are kept constant in the dermis layers,
the total perfusion will slightly decrease since the epidermis layer (with zero perfusion) will
constitute a larger part of the sampling volume. See Ref. 13 for further details.

For comparison, we also compute a perfusion estimate from single-exposure contrast as

EQ-TARGET;temp:intralink-;e006;116;130PSEðTÞ ¼
1

KðTÞ − 1: (6)

There are other single exposure models where P is proportional to K−2, e.g. Ref. 32. We have
done the analysis using this model as well, but the performance was quantitatively worse than for
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Eq. (6), and the conclusions were unchanged by this choice. Furthermore, Eq. (6) is relatively
common in clinical settings as it is used in the PeriCam PSI (Perimed AB, Järfälla, Stockholm,
Sweden), and thus a good comparison for the potential benefits of our new model.

2.6 Artificial Neural Network Perfusion Model

A neural network was trained on the data from the tissue model to estimate speed-resolved per-
fusion in a single pixel of the multi-exposure contrast images. Thus, the network had seven inputs
representing squared multi-exposure contrast K2ðTÞ calculated at T ¼ ½1; 2; 4; 8; 16; 32; 64� ms
exposure time and three outputs representing speed-resolved perfusion in the ranges 0 to 1, 1
to 10, and >10 mm∕s. The neural network was a fully connected network with a single hidden
layer with 25 nodes and hyperbolic tangent (tanh) activation. Linear activation was used for
the output layer. To obtain a perfusion image, the model was applied to each individual pixel
of the contrast image. The architecture was determined by the process described in Sec. 2.6.1.
The dataset consisted of 100,000 tissue models, divided into 70/15/15% for training, validation,
and test, respectively. The validation set was used for early stopping and in-training hyperpara-
meter tuning, and the test set was used to get an unbiased performance metric for comparison of
multiple networks. 25 networks were trained from random initializations, and the best perform-
ing on the 15% test-split was selected as the final model. This model was then evaluated on a
separate dataset of 100,000 tissue models, to get the final unbiased performance metrics. The
training was done using the Deep Learning toolbox in MATLAB 2021b (MathWorks Inc., MA).

The model was trained using a weighted mean square error (wMSE), where the individual
errors of each speed-component were weighted by their contribution to the total perfusion.
Specifically,

EQ-TARGET;temp:intralink-;e007;116;447wMSEðjÞ ¼ 1

N

XN
i¼1

ðPANN;j;i − Ptrue;j;iÞ2
Ptrue;tot;i

; j ¼ f1;2; 3g; (7)

where

EQ-TARGET;temp:intralink-;e008;116;387Ptrue;tot;i ¼
X3
j¼1

Ptrue;j;i; (8)

and j indicates the speed component (0 to 1, 1 to 10, >10 mm∕s, respectively, for j ¼ 1, 2, and
3), PANN is the network output (predicted speed-resolved perfusion), Ptrue is the target output
(true speed-resolved perfusion calculated directly from the tissue model), and N is the number of
samples, i.e. number of models in the training, validation, or test set. For evaluation, the weighted
mean absolute percentage error (wMAPE) was used, due to the easier interpretability

EQ-TARGET;temp:intralink-;e009;116;281wMAPEðjÞ ¼ 100

N

XN
i¼1

jPANN;j;i − Ptrue;j;ij
Ptrue;tot;i

; j ¼ f1;2; 3g: (9)

For each speed component j, this metric informs the prediction error relative to the total
perfusion. This accounts for the speed distribution and does not inflate small relative errors
at low perfusion values, unless the total perfusion is also low. An example is warranted.

Suppose we have the true speed-resolved perfusion Ptrue ¼ ½0.01; 0.1; 1�, and the prediction
PANN ¼ Ptrue þ 0.01 ¼ ½0.02; 0.11; 1.01�. The unweighted absolute percentage error would be
MAPE ¼ 100jðPANN;j − Ptrue;jÞ∕Ptrue;jj ¼ ½100; 10; 1�%, whereas the weighted absolute per-
centage error would be wMAPE ¼ 100jðPANN;j − Ptrue;jÞ∕Ptrue;totj ≈ ½0.9; 0.9; 0.9�%, better
reflecting the fact that the low speed-component is small in this case and thus should not be
given as much weight in the total error.

Empirical results confirmed that using wMSE for training resulted in better overall performance
compared to unweighted MSE. Note that wMAPE is only an applicable metric for the speed com-
ponents. For total perfusion and single-exposure perfusion, unweighted MAPE is used instead.

We also present the coefficient of determination, R2, between estimated and true perfusion,
which represents the proportion of the variance in perfusion explained by the model.

Hultman et al.: Speed-resolved perfusion imaging using multi-exposure laser speckle contrast imaging. . .

Journal of Biomedical Optics 036007-6 March 2023 • Vol. 28(3)



2.6.1 Choice of ANN architecture

To determine the optimal ANN architecture described above, considering both accuracy and
computational complexity, a large number of network architectures were evaluated in a hyper-
parameter grid search over number of hidden layers and their sizes, activation functions, and
regularization weights. The results showed that two hidden layers performed slightly better than
the single hidden layer architecture but not enough to warrant the increase in computations.
Similarly, performance increased with larger layers but did not warrant a size above 25 nodes.
The small size also enables efficient real-time implementations. Using L2-regularization did not
significantly affect the results and thus was not used in the final model. This is likely due to
the small size of the model, making overfitting unlikely. Finally, the activation functions tanh
[Eq. 10(a)], rectified linear unit [ReLU, Eq. 10(b)], saturated linear unit [SatLU, Eq. 10(c)], and
softplus [Eq. 10(d)] were investigated. Tanh performed best and softplus only slightly worse,
whereas ReLU and SatLU performed significantly worse, possibly due to the nonsmooth tran-
sitions at 0 for ReLU and at 0 and 1 for SatLU

EQ-TARGET;temp:intralink-;e010a;116;561 tanhðxÞ ¼ ðe2x − 1Þ∕ðe2x þ 1Þ; (10a)

EQ-TARGET;temp:intralink-;e010b;116;517ReLUðxÞ ¼ maxð0; xÞ; (10b)

EQ-TARGET;temp:intralink-;e010c;116;495SatLUðxÞ ¼ minð1;maxð0; xÞÞ; (10c)

EQ-TARGET;temp:intralink-;e010d;116;473SoftplusðxÞ ¼ logð1þ exÞ: (10d)

To enable the use of the model in clinical applications, real-time processing is a necessity. For
this reason, the models were kept as small as possible without impacting accuracy. The average
processing time for one 180 × 320 × 7 multi-exposure contrast image was 33 ms using a single-
threaded MATLAB implementation running on a 3.5 GHz Intel Xeon CPU. Despite not being
the focus of this study, this model already runs in real-time. More optimized implementations
would likely reduce this time further.

2.6.2 Restricted tissue model

In addition to the main ANN model, we trained a separate model on a restricted training set,
where all tissue parameters not directly related to perfusion were set to the median of their
respective distributions in Fig. 1. In other words, tepi, μ 0

s , μa;epi, dvessels, and Soxy were fixed
at one value in all 100,000 tissue models, whereas cblood and the parameters of the speed dis-
tribution were unchanged from the original distributions. Note that μa;dermis still varied due to
changes in cblood. Additionally, the noise component KnoiseðTÞ was omitted from this data. This
dataset represents a situation where the only influence on the speckle contrast is from the param-
eters directly determining the perfusion. This allows investigating the core method without con-
founding factors and sets a rough upper bound on the achievable performance. The network
architecture of this model was the same as that of the main model.

2.7 In-Vivo Measurements and Measurement System

The MELSCI instrument used in this study has been thoroughly described in previous
publications.18,33 In summary, the technique is based on the continuous acquisition of images
with 1 ms exposure time from a 1000 frames-per-second high-speed CMOS sensor. The images
are successively accumulated to create longer synthetic exposure times at 2, 4, 8, 16, 32, and
64 ms.33 The use of synthetic exposure times was first proposed and validated in Ref. 34. Further,
the accumulation and speckle contrast algorithms are implemented in a field-programmable gate
array (FPGA) closely integrated with the CMOS sensor. This enables continuous real-time
acquisition and processing of multi-exposure contrast images, without any loss of information
due to the negligible interframe time.18 Each set of 64 speckle images results in one multi-expo-
sure contrast image, enabling a framerate for perfusion images of 15.6 frames-per-second.
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An arterial occlusion-release provocation of the forearm was performed in a healthy 24-year-
old male volunteer. The subject did not consume any caffeine or nicotine for 6 h prior to the
experiment and rested for 15 min before the measurement in a 23°C temperature-controlled
room. The protocol followed 5þ 5þ 5 min of baseline, brachial occlusion at 200 mmHg,
and reperfusion, and was approved by the Regional Ethical Review Board in Linköping,
Sweden (D.no. 2018/282-31). Written informed consent was given by the volunteer before the
experiment.

3 Results

3.1 ANN Simulation Performance

The performance of the main and restricted ANN models on the simulated evaluation sets is
presented in Fig. 3. The three speed components were evaluated using the wMAPE metric
[Eq. (9)] and total perfusion was evaluated using MAPE. The coefficient of determination
R2 between predicted and target perfusion was also computed for all four perfusion estimates.
The data was divided into 50 bins with 2000 points each, according to the true perfusion (x-axis).
The mean predicted perfusion in each bin is shown by the black line, with the blue area rep-
resenting the average deviation from the mean. The ideal prediction is indicated by the red dotted
line. The top row shows the performance of the restricted model with only perfusion parameter
variation and no noise, and the second row is the main model. The histograms in the last row
show the distribution of true perfusion in the dataset.

The second row of Fig. 3 demonstrates the combined effect on perfusion from all skin param-
eters in many randomized models. The relatively low R2 for the lowest speed component for
the main model (R2 ¼ 0.41; 0 to 1 mm∕s), increased with higher speed and for total perfusion.
The same is true for the restricted model presented in the first row, where all metrics are
significantly better than the main model case.
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Fig. 3 The top row shows perfusion predicted by the ANN trained on the restricted tissue model
compared to true perfusion [%RBC ×mm/s]. The second row shows the same for the main model.
The data were divided into 50 bins, each with 2000 data points, based on the true perfusion
(x -axis). The black lines are the mean predicted perfusion in the bins, and the blue areas indicate
the average deviation from the mean in each bin. The red dashed line is the ideal theoretical pre-
diction. Summary metrics weighted mean absolute percentage error (wMAPE) for speed-resolved
perfusion, mean absolute percentage error (MAPE) for total perfusion, as well as R2, is presented
for both models. The histograms show the distribution of true perfusion in the dataset.

Hultman et al.: Speed-resolved perfusion imaging using multi-exposure laser speckle contrast imaging. . .

Journal of Biomedical Optics 036007-8 March 2023 • Vol. 28(3)



To put these values in context, Fig. 4 shows similar performance plots as Fig. 3, using the
main model for generating evaluation data, but for single-exposure perfusion estimated with
Eq. (6). To allow comparison between the arbitrary perfusion units from the single-exposure
model and the absolute units of true perfusion, the estimated perfusion was normalized to have
the same mean as true perfusion in the range 0 to 2.5%RBC × mm/s. This normalization was
not done for the ANN model but would only have had a small effect on the current values.
Regardless, the single-exposure model performs worse than the ANN model for both metrics
(MAPE and R2) at all exposure times. Note that the plots in Fig. 4 compare with total perfusion
and thus should only be compared to the fourth column in Fig. 3.

To further evaluate how specific skin parameters influence the perfusion, one skin parameter
at a time was changed over a wide range of values while the rest of the parameters were
unchanged, as presented in Figs. 5 and 6. The relative change in four perfusion estimates,
PANN;tot, PSEð1 msÞ, PSEð8 msÞ, and PSEð64 msÞ was compared to the relative change in true
perfusion Ptrue;tot. Fig. 4(a) shows the median relative change in perfusion in 5000 tissue models
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Fig. 4 Predicted single-exposure perfusion PSEðT Þ [PU] evaluated against true total perfusion (%
RBC × mm/s). To allow comparison between the arbitrary perfusion units and absolute perfusion
units, the predicted values were normalized to have the same average as true perfusion in the
displayed range. As in Fig. 3, the histograms show the distribution of true perfusion in the dataset.
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Fig. 5 Relative change in perfusion estimates due to a change in (a) blood tissue fraction and
(b) mean blood speed. Changes are relative to perfusion estimates at (a) 0.55% and (b) 1 mm/s,
respectively. Each point is the median change in 5000 tissue models randomly selected from
the test dataset. An ideal method should follow the dashed line. Note the log-log scales.
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due to changes in blood tissue fraction. Both PANN;tot and PSEð8 msÞ had close to linear
responses. Figure 5(b) shows similar changes when varying the mean blood speed. Here,
PANN;tot had a significantly more linear response compared to all single-exposure perfusion
estimates.

Figure 6 shows the median relative change in perfusion due to changes in reduced scattering
coefficient, vessel diameter, and epidermis thickness, where almost no change is expected in the
ideal case (some minor changes due to changes in sample volume are expected in the ideal case).
PANN;tot was highly sensitive to changes in scattering coefficient [Fig. 6(a)], although less
sensitive than the single-exposure methods. While PANN;tot was less sensitive to vessel diameter
than the single-exposure methods, it still deviated by up to 40% for very small vessel diameters
[Fig. 6(b)]. PANN;tot was almost insensitive to changes in the epidermis thickness, whereas the
single-exposure methods were increasingly sensitive with higher exposure time.

3.2 In-Vivo Measurements

Figure 7 shows an intensity image of the forearm in the occlusion-release experiment and
the region-of-interests (ROI) used in the analysis. The large black ROI was used to automatically
determine the color scale for the perfusion images in Figs. 8 and 9 and for studying spatial
variations in the perfusion. The small ROIs were used to extract time-resolved perfusion for
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Fig. 6 Relative change in perfusion estimates due to a change in (a) reduced scattering coeffi-
cient, (b) vessel diameter, and (c) epidermis thickness, indicating the largest sources of error in the
absolute value of the estimated perfusion. Changes are relative to (a) 1.6 mm−1, (b) 0.055 mm,
and (c) 0.205 mm, respectively. Each point is the median change in 5000 tissue models randomly
selected from the test dataset. An ideal method should follow the dashed line.

Fig. 7 Intensity image of the forearm presented in the occlusion-release experiment. The large
black ROI was used to automatically determine the color scale for the perfusion images in Figs. 8
and 9, and for studying spatial variations in the perfusion. The red and blue ROIs were used to
extract the time traces in Figs. 10 and 11 in a high-flow and low-flow region, respectively.
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Figs. 10 and 11 and were placed on high-flow (red) and low-flow (blue) regions outside any
visible large vessels, to highlight the spatiotemporal heterogeneity of the microcirculation.

Figure 8 presents speed-resolved perfusion images during an arterial occlusion-release
provocation of the forearm of a healthy volunteer. The images are time averages over 2 s
(32 images), selected at 2:00 min (baseline), 9:00 min (occlusion), and 10:06 min (early after
release). The absolute value of perfusion is very different for the different speed components and
the three phases of the provocation, making direct comparison difficult when using the same
color scale for all images. To visually enhance the similarities and differences in the perfusion
measures, the color scale of each image was scaled as three times the corresponding mean value
computed in the region marked by the large ROI in Fig. 7 (the factor 3 was chosen empirically).
The perfusion scales in the unit %RBC × mm/s are shown in the colorbars below each image.
Furthermore, to quantify the heterogeneity of the microcirculation, Table 1 summarizes the

Fig. 8 In-vivo measurement of a forearm during an occlusion-release provocation. Columns re-
present the three phases of the provocation; baseline, occlusion, and reperfusion. Rows represent
the three speed components and total perfusion. The color scale in each image was selected for all
images to be visually comparable, using three times the mean perfusion in the large ROI in Fig. 7.
Perfusion scales in the unit %RBC × mm/s are displayed in the colorbar below each image. The
high perfusion area in the upper left corner of the images is an artifact due to a low intensity.
Similarly, the visually high perfusion at the edges of the arm in the occlusion images is due to
the low perfusion scale in combination with the low intensity.
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coefficient of variation (CV) in the large ROI marked in Fig. 7, for each perfusion image in
Fig. 8. The CV increases for the higher speed components, indicating a more spatially hetero-
geneous distribution of large vessels, assuming that higher speeds are more prominent in larger
vessels. This is consistent with the morphology of the microvasculature.35 The visible vessels in
Fig. 8 are easily observed in the occlusion images for the higher speed components.

Figure 9 presents images at the same time-points as in Fig. 8, with perfusion estimated by
single-exposure contrast at 1, 8, and 64 ms, according to Eq. (6). Color scales were selected in
the same way as described for Fig. 8. The vascular structures observed during occlusion in the
ANN perfusion (see Fig. 8; 1 to 10 mm∕s, >10 mm∕s and total perfusion), are not seen in the
corresponding single-exposure images (Fig. 9). The subjective heterogeneity in Fig. 9 is lower
than that in Fig. 8, especially for the longer exposure times, but difficult to directly compare due
to the increased noise.

Fig. 9 Perfusion estimates based on single-exposure LSCI using the inverse contrast model
described in Eq. (6), for exposure times 1, 8, and 64 ms. The color scale in each image was
selected for all images to have the same apparent mean, based on the perfusion in the large
ROI in Fig. 7. Perfusion values in arbitrary units are presented in the colorbars below each image.

Table 1 Coefficient of variation (CV) [%] for the perfusion in Fig. 8,
computed in the large ROI in Fig. 7.

Baseline Occlusion Reperfusion

0–1 mm/s 13 14 19

1–10 mm/s 22 27 28

>10 mm/s 32 117 36

Total 23 26 31
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Fig. 10 Speed-resolved perfusion in (a) a low-flow ROI and (b) high-flow ROI during the occlusion-
release provocation (baseline 0 to 5 min, occlusion 5 to 10 min, reperfusion 10 to 15 min). Care
was taken to place the ROIs (see Fig. 7) outside any large vessels visible in the perfusion and
intensity images. Zoom plots show 12 s during each of the three phases of the provocation.

Fig. 11 Single-exposure perfusion PSEðT Þ at 1, 8, and 64ms exposure time, for the same ROIs as
Fig. 9. The data were baseline-normalized to enable comparison between the different exposure
times.
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Figure 10 presents time- and speed-resolved perfusion of a low-flow region (top) and a high-
flow region (bottom), according to the small ROIs shown in Fig. 7. A 0.5-s mean filter was
applied to the graphs in the full timescale to suppress the heart-beat variations and increase
visibility of long-term changes. The zoomed-in plots show unfiltered data in 12-second sections
during baseline, occlusion, and reperfusion. Gridlines in the zoom plots indicate 1-s intervals.
Note that for the low-flow ROI, all speed components are of approximately the same magnitude
in baseline and at reperfusion, whereas for the high-flow ROI, the high-speed component is
dominant at both baseline and at reperfusion. Furthermore, for both the low-flow and the
high-flow ROIs, both the 1 to 10 mm∕s and the >10 mm∕s speed components show heart-
synchronous pulsations at reperfusion.

Figure 11 presents single-exposure perfusion [Eq. (6)] in the same two ROIs, at 1, 8, and
64 ms exposure time. The perfusion at each exposure time was normalized to baseline
(first 5 min) to allow for comparison between the exposure times.

4 Discussion

The method presented in this paper addresses several of the long-standing issues with LSCI
and more recently MELSCI; the arbitrary units, limitation to relative measurements, and
the inability to distinguish between perfusion from high concentration with low speed and
perfusion from low concentration with high speed. The new method allows for direct inter-
individual comparisons and the establishment of normative microcirculatory perfusion levels,
which potentially increases the clinical usefulness of speckle imaging. The ability to separate
slow flow, roughly corresponding to flow in capillaries, from fast flow, roughly corresponding to
arterioles and venules, is especially important. This can enable direct analysis of the nutritive
capillary flow, which otherwise would likely be masked by the much higher perfusion in the
larger vessels.

When evaluating the ANN model, two aspects are especially important to consider. First, the
absolute accuracy of the model, and second, the response to changes in the dynamic skin proper-
ties. The absolute accuracy for each speed component and the total perfusion is summarized
in Fig. 3. We first observe that the restricted model performs very well, indicating that the
multi-exposure contrast contains significantly more information about the speed-resolved per-
fusion than is apparent when only examining the main model. This performance could likely be
increased further by extending the range of exposure times, especially to lower values. However,
this should be weighed against the increased hardware and processing requirements.

Compared to the restricted model, the main model performs significantly worse. We
observed that the estimation error for total perfusion was ∼34%. This shows that the con-
founding tissue parameters affect the contrast such that the true information about the perfusion
is partially lost. This is especially true for the low-speed component (0 to 1 mm/s), which has
a nonlinear response to true perfusion when influenced by the effect of tissue parameters and
noise. It is possible that this could be addressed by estimating the most important tissue param-
eters using complementary methods and provide them as input to the model so it can learn to
compensate for these effects. This will be an important topic of future research.

It is also important to examine the error values (e.g., MAPE = 34% for total perfusion) in the
proper context. As we demonstrate in Fig. 4, the corresponding errors when using single-expo-
sure LSCI is at best 67%, obtained at T ¼ 1 ms. The error increases with higher exposure times
and is over 100% for T ¼ 64 ms. True perfusion is very difficult to estimate from speckle con-
trast since the contrast is also affected by tissue properties that are independent from perfusion.
Conventional LDF perfusion, on the other hand, is affected by the tissue properties in a similar
way to speckle contrast. As we have demonstrated in a previous study, contrast from the same
exposure times used in this study can be used to estimate LDF perfusion almost perfectly,2 but
this is not the case for true perfusion.

It is also important to realize that the 34% error does not reflect the uncertainty for relative
changes in perfusion for a single individual at a single skin site, but rather the accuracy across the
whole dataset with very wide distributions of skin properties, as seen in Fig. 1. To better describe
how the model behaves in a single individual, the analysis in Fig. 5 is more relevant, where we
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see that the model has a linear response to both blood concentration and mean blood speed.
In other words, given a single individual, the absolute accuracy in perfusion is determined
by the static skin properties, but the model responds linearly to changes in perfusion, for example
during provocations. This also indicates that perfusion from tissues with similar properties can
likely be compared with a much smaller variation than 34%. For example, measurements on the
forearm in different individuals would likely fall in the same region in the space of tissue proper-
ties, thus resulting in comparable perfusion values between individuals. Conversely, comparing
perfusion in the forearm and palm might give higher variations even in a single individual, due to
the differences in tissue properties.

When examining Fig. 5, we observe some deviations in the estimated PANN;tot from the ideal
line. PANN;tot slightly overestimates perfusion at high average speeds, and begins to deviate from
the true value Ptrue;tot at low blood tissue fractions (<0.2%), where it has a less linear response
than the single-exposure perfusion estimates PSEð1 msÞ and PSEð8 msÞ. The combined mean
percentage deviation for Figs. 5(a) and 5(b) is PANN;tot: 8%, PSEð1 msÞ: 14%, PSEð8 msÞ: 17%,
and PSEð64 msÞ: 44%. Thus, when considering the combination of linearity to both parameters,
PANN;tot is overall the stronger model.

Figure 5 also demonstrates that the choice of exposure time for single-exposure LSCI has
a large impact on the accuracy of the perfusion estimates relative to speed changes. Lower
exposure time results in a more linear response to changes in the speed, whereas an exposure
time of 8 ms is almost perfectly linear relative to changes in blood tissue fraction. It has been
suggested that 5 ms is the optimal exposure time for LSCI,36 but this will likely depend on the
application.

Figure 6 summarizes the largest contributing factors to the error in estimated perfusion. For
different values of scattering and vessel diameter, we observe an almost unnoticeable change in
true perfusion, whereas all perfusion estimates are significantly affected. The small change in
true perfusion is due to minor changes in the sampling volume. Changes in the epidermis
thickness have a small effect on the true perfusion, and slightly higher effect on the perfusion
estimates, especially for thin epidermis layers. The effect is smaller on PANN than on all single-
exposure estimates for changes in scattering, vessel diameter, and epidermis thickness. We also
performed this analysis for changes in oxygen saturation and epidermis absorption coefficient
(representing melanin concentration) and found expectedly low changes in both PANN and
PSE of <0.5% and 2% across the whole tested ranges, Soxy ∈ ½0;100�%, μa;epi ∈ ½0.01; 3.5� mm−1,
respectively. However, the effect of those parameters is likely higher if a laser with a shorter
wavelength than 780 nm is used, where the absorption is generally higher both for melanin
and hemoglobin, and generally differs more between oxygenized and reduced hemoglobin.
In summary, the analysis of Fig. 6 demonstrates that some skin properties, especially scattering
and vessel diameter, affect the speckle contrast in a way that cannot be decoupled from changes
in blood concentration or speed, thus affecting the estimated perfusion. The magnitude of the
effects can be decreased by limiting the range of parameter values in the training data, but this
might also have the opposite effect if the distributions are too narrow to accurately cover all
tissues in real data. The influence of tissue properties on the absolute accuracy of the perfusion
estimate will be an important topic of research for future studies. Since these properties cannot be
directly measured using MELSCI, solutions will likely require integrating additional modalities
into the imaging system.

Figure 8 presents speed-resolved perfusion images from the arterial occlusion-release provo-
cation. The first observation is that the subjective image quality of these perfusion estimates is
higher than in the single-exposure perfusion estimates in Fig. 9, both in terms of less noise and
in providing visible vessel structures. It is worth noting that the single-exposure estimates are
based on exactly the same 64 ms of data as the ANN perfusion estimate. For example, the 8 ms
single-exposure contrast is the average of 8 consecutive contrast images during the 64 ms. See
Ref. 18 for the details of the contrast algorithm. While the absolute value of the perfusion on the
large vessels should be interpreted carefully since the ANN model is trained to estimate micro-
circulatory perfusion, the fact that they are clearly visible is important, as this means that further
analysis can be performed on skin regions that do not contain the large vessels. Since most of the
large vessels are not visible in the single-exposure images, with these methods, there is a risk of
analyzing tissue that is not representative of the microcirculation.
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We can observe how the perfusion becomes more concentrated to high-perfusion sites for
higher speed components. This indicates an increased sensitivity to perfusion in larger vessels,
which are expected to be more heterogeneously distributed and have higher flow speeds.
However, the anatomical interpretation of these high-flow spots deserves further studies. To
quantify the heterogeneity, we computed the coefficient of variation (CV) for each image in
Fig. 8, which is summarized in Table 1. Here we observe that the CV increases toward higher
speed components, corresponding to the more heterogeneous perfusion. This effect is especially
noticeable in the images during the occlusion, where the perfusion in the 0 to 1 mm∕s interval is
more homogeneous, whereas the >10 mm∕s interval has perfusion mostly concentrated in the
large vessels, with low perfusion in between the large vessels. The perfusion in the large vessels
during the occlusion is possibly due to Brownian motion in the blood, although these perfusion
values should be interpreted with care since the training dataset did not include this morphology.

In Fig. 10, we present the speed-resolved perfusion in two ROIs, manually selected on a low-
flow and a high-flow perfusion site by inspecting the images in Fig. 8. This demonstrates the
two extremes of the heterogeneous perfusion, with an ∼2 times higher reperfusion peak for
total perfusion in the high-flow ROI compared to the low-flow ROI. The zoomed-in plots in
Fig. 10 show the different speed components in more detail. Note that in both ROIs during
the occlusion, the 0 to 1 mm∕s perfusion is the highest of the three speed components, corre-
sponding to a low-speed Brownian motion, and the >10 mm∕s perfusion is the lowest. For the
high-flow ROI, this is the opposite order compared to baseline. In the reperfusion phase, the
0 to 1 mm/s component is the lowest and the>10 mm∕s component is the highest. This behavior
is expected and demonstrates multiple large shifts in the speed distribution during the experi-
ment. The heart-beat signal is also clearly visible during the reperfusion for the two highest speed
components, and a strong flowmotion at ∼0.075 Hz (13 s period) can be seen especially in the
high-flow ROI, indicating high myogenic activity.37,38 If we inspect the amplitudes of cardiac-
related pulses in the reperfusion phase, we find that it is ∼4 times higher in the high-flow ROI
compared with the low-flow ROI. This further indicates that the high-flow ROI contains larger
vessels where cardiac pulses are more visible.

For comparison, in Fig. 11 we present the same ROIs analyzed with the single-exposure
perfusion model [Eq. (6)]. The single-exposure perfusion from different exposure times is
naturally similar since the data were normalized to baseline to allow comparison, but we also
observe that the differences between the low-flow and high-flow region are smaller than in the
speed-resolved data in Fig. 10. It is also apparent that the noise level is higher compared to the
ANN model. This is expected since the ANN is specifically trained to account for the meas-
urement noise present in the speckle contrast, and the single-exposure model is not.

There are a few limitations to this work, and some disadvantages compared to conventional
single-exposure LSCI. First, our model is specifically trained on a dataset mimicking skin tissue.
While it would be possible to change the model to target other tissues, this was not a part of this
work. Second, the combination of the complex tissue model and machine learning makes it
difficult to investigate the reason our method works or the cases when it fails. The benefits of
our model should be weighed against the higher transparency inherent in a model such as Eq. (6),
or other MELSCI models (e.g., Ref. 7). The complex model, in combination with the custom
MELSCI system, also makes replication of this study quite difficult. Another limitation of the
current study is that we did not perform validation measurements in a controlled flow phantom.
Given the complex tissue morphology targeted by our model, such validation setups are likely
difficult to achieve. However, the main components of the presented methodology have been
independently validated in previous studies.2,14

Overall, the results presented in this paper illustrate possible analyses enabled by speed-
resolved perfusion. A similar principle has been useful for analysis in a pointwise measuring
system, where a reduced low-flow speed-component, interpreted as reduced nutritive capillary
flow, could be observed in patients with type 2 diabetes compared to healthy controls.15,39 For
speed-resolved perfusion imaging, it is reasonable to assume that the added spatial information
can remove the uncertainty present in single-point measurements due to the spatial heterogeneity
in the microcirculation. Furthermore, speed-resolved perfusion imaging potentially enables
applications where both the spatial heterogeneity and the separation of low-speed from high-
speed vasculature are clinically relevant, such as in sepsis.40,41
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5 Conclusion

We have presented a method for assessing speed-resolved perfusion in an imaging modality.
The distinction between physiologically relevant speed components and the absolute units
%RBC × mm/s has the potential to greatly improve the physiological interpretation and the
clinical impact of measurements using MELSCI.
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