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CONCLUSION 
 
The range of problems that are successfully solved with the use of laser systems 
has grown considerably in recent years. The expanding application of current 
optoelectronic and adaptive optics systems is state-of-the-art optics. Historically, 
adaptive optics was first used in astronomy and more recently in ground-based 
systems for imaging artificial satellites and other space objects, but now other 
efficient applications are being reported increasingly often. In our opinion, in the 
near future adaptive optics will be widely used in a number of areas. Current 
adaptive optics can produce breakthroughs in industrial technologies and 
medicine. The performance of optoelectronic devices in manufacturing and 
medical applications (such as welding and cutting, drilling metal and extrahard 
materials, laser scalpels, or optical systems in ophthalmology) that employ 
coherent processing of signals can be considerably improved through 
implementation of adaptive optics elements and systems. 

However, the development of optoelectronic systems is a rather long process 
that usually proceeds in the absence of complete information on the peculiarities 
of the medium of propagation. Also, modern optoelectronic systems are rather 
expensive because at the initial stage of their design they require calculating and 
estimating the efficiency of applying various algorithms and programs that are 
based on current adaptive optics technologies. The main parameters of such 
systems can hardly be changed during their operation. This forces designers to 
keep in mind possible changes in the system’s main parameters at different stages 
of design and production. 

The feasibility of sufficiently flexible adjustment of optical system 
parameters is now one of the main requirements in designing optoelectronic 
devices, and this feasibility is provided by adaptive optics systems. This is 
because a change in the main parameters of an optical system can be made 
simply by replacing the operational algorithm of an adaptive system. 

The creation of optical systems necessarily includes designing the systems 
and determining the possibilities of their application under actual atmospheric 
conditions. In this book we have described these stages, taking into account 
present-day achievements.   

Adaptive optics systems differ from other systems in the elements included 
in the optical scheme: a wavefront sensor, an active optical element (active 
mirror), and a reference source supplying information on fluctuations and the 
radiation propagation channel. Each element of the optical scheme calls for 
precalculations; therefore, calculations of not only the parameters of adaptive 
optics, but the system as a whole are often needed. Corresponding calculations 
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are performed for the wavefront sensor, active mirror, and certainly the reference 
source formed in the propagation channel of the optical radiation to be corrected. 

One of the ways to create a reference source is to use a signal backscattered 
from atmospheric inhomogeneities. Various schemes for formation of a reference 
source (a laser guide star) for imaging purposes have been described. In this 
book, we discussed the limited capabilities of image correction using a signal 
based on measurement of the LGS position. The direct use of an LGS signal for 
full-aperture tip-tilt correction is impossible because the valid signal should be 
first separated from the data of optical observations of LGS image jitter. This 
aspect of the problem was described in detail in this book with allowance made 
for modern advances in this field. Earlier, attempts were undertaken to 
systematize numerous approaches solving the problem of LGS tilt retrieval for an 
adaptive optics scheme operating against an LGS signal. We have considered 
here a “general” scheme for forming a laser guide star. 

Since numerical simulation of optical wave propagation through the 
atmosphere is now one of the main methods for studying and designing modern 
optoelectronic systems, we have paid considerable attention to describing the 
computational algorithms that can be used in software packages for modeling the 
adaptive control of laser beams and imaging systems in the atmosphere. The 
propagation of optical radiation through a randomly inhomogeneous medium is 
simulated using a numerical solution of the wave equation written in the 
parabolic approximation for the scalar complex amplitude of the optical field and 
the field of the refractive index of the medium. When dynamic and nonlinear 
problems are modeled, the wave equation is solved together with some material 
equation describing how the state of the medium changes in time. In our 
calculations we use the modified splitting method and the fast Fourier transform 
algorithm. 

The algorithms and programs developed by us allow the operation of an 
optoelectronic system to be modeled as a whole. It becomes possible to describe 
such phenomena as nonstationary thermal blooming, in which the refractive 
index of the medium varies because the medium is heated by the laser radiation 
propagating through it. The algorithms proposed here make it possible to model 
the evolution of the temperature field by taking into account two mechanisms: 
forced convection (in the arbitrary direction of the wind velocity) and molecular 
heat conductivity; this is very important if there are dead zones on the path of the 
laser radiation. 

To take into account the effect of turbulent fluctuations of the atmospheric 
refractive index on the propagation of laser radiation (the laser beam), we model 
two-dimensional randomly inhomogeneous phase distortions of the wavefront 
with a spectral density corresponding to the Kolmogorov model of the turbulence 
spectrum that accounts for the finiteness of the inner and outer scales of 
turbulence. According to the Kolmogorov–Obukhov hypothesis, the structure 
function in fluctuations of temperature and the atmospheric refractive index 
obeys the power law. The finite values of the inner and outer scales of turbulence 
were introduced in the calculations. The ratio of these scales is taken, as a rule, to 
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be equal to 1000. The structure function depends on the intensity of turbulent 
distortions. In the atmospheric surface layer (h < 20 m) this intensity decreases 
with height, and the character of this height dependence changes with 
meteorological conditions. This significantly complicates the development of a 
single universal model. We use several models, including a rather simple 
empirical model obtained from experimental data (up to 20 km) under the 
conditions of best, medium, and worst visibility.  

The conditions of propagation of laser radiation through the atmosphere include 
such characteristics as the position of the laser source and the position and motion of 
the receiver. The atmosphere is modeled as a stratified medium. The variable 
parameters of the problem are the altitude of the laser source, the initial radius of 
the beam, the radiation intensity at the optical axis, the intensity distribution 
profile of the optical beam, the altitude of the receiver, the zenith angle of the 
propagation path, and the azimuth and scanning rate of the laser source. 

To take into account the vertical variability of atmospheric parameters 
entering into the equations to be solved, we propose to use the standard models 
of the atmosphere that allow for physical and geographical conditions, as well as 
spatiotemporal variations of meteorological parameters based on statistical 
measurements over many years. 

The atmospheric air is assumed to be an ideal gas of a constant composition 
that is described by the state equation, including pressure, density, and 
temperature. The atmosphere is divided into the following layers: troposphere, 
stratosphere, mesosphere, and thermosphere. The altitude profile of the 
temperature for each layer is approximated by a linear function of the 
geopotential altitude. The vertical profile of the air density is calculated from the 
given profiles of temperature and pressure based on the state equation of the ideal 
gas. 

Because of considerable spatiotemporal variability of the wind in the 
atmosphere, when solving applied problems we think it is worth using the data 
from online sensing of the path along which the optoelectronic system will 
operate. However, to evaluate the efficiency of adaptive optics systems designed 
to operate through the atmosphere, it is quite sufficient to restrict consideration to 
the models of the wind structure that were obtained from long-term 
measurements at sensing stations. 

Since molecular absorption of laser radiation in the atmosphere has 
pronounced frequency dependence, a line-by-line calculation is now the most 
universal and accurate method for determining absorption characteristics. 

Actual adaptive optics systems employ several types of sensors, including the 
Hartmann sensor, to record phase distortions. We propose a specialized sensor 
based on the Hartmann algorithm. We use up-to-date approaches to develop a 
stable phase reconstruction algorithm, in particular for strong intensity 
scintillations, as well as algorithms for phase “joining” under dislocation 
conditions. 

We have analyzed a wide range of control elements with different degrees of 
freedom, geometries of mutual arrangement, and frequencies and spatial 
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fluctuations of the response of every control element. In this analysis we included 
mirrors for tip-tilt correction of the optical beam as a whole. In addition, we have 
studied various active and adaptive mirrors: zonal and modal correctors and 
segmented mirrors of different geometries, as well as a static model of a flexible 
mirror and a numerical model of a dynamic mirror. 

The authors hope that this book will be interesting for its readers. It will be 
useful for specialists dealing with the development of devices and elements of 
adaptive optics systems. 
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