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Preface 
 
This book is a timely review and analysis of the various optical 
architectures, display technologies, and optical building blocks used 
today for consumer, enterprise, or defense head-mounted displays 
(HMDs) over a wide range of implementations, from smart glasses and 
smart eyewear to augmented-reality (AR), virtual-reality (VR), and 
mixed-reality (MR) headsets.  

Such products have the potential to revolutionize how we work, 
communicate, travel, learn, teach, shop, and get entertained. An MR 
headset can come in either optical see-through mode (AR) or video-
pass-through mode (VR). Extended reality (XR) is another acronym 
frequently used to refer to all declinations of MR. 

Already, market analysts have very optimistic expectations on the 
return on investment in MR, for both enterprise and consumer markets. 
However, in order to meet such high expectations, several challenges 
must be addressed. One is the use case for each market segment, and 
the other one is the MR hardware development. 

The intent of this book is not to review generic or specific 
AR/VR/MR use cases, or applications and implementation examples, 
as they have already been well defined for enterprise, defense, and 
R&D but only extrapolated for the burgeoning consumer market. 
Instead, it focuses on hardware issues, especially on the optics side. 

Hardware architectures and technologies for AR and VR have 
made tremendous progress over the past five years, at a much faster 
pace than ever before. This faster development pace was mainly fueled 
by recent investment hype in start-ups and accelerated mergers and 
acquisitions by larger corporations. 

The two main pillars that define most MR hardware challenges are 
immersion and comfort. Immersion can be defined as a multisensory 
perception feature (starting with audio, then display, gestures, haptics, 
etc.). Comfort comes in various declinations: 
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- wearable comfort (reducing weight and size, pushing back the 
center of gravity, addressing thermal issues, etc.),  

- visual comfort (providing accurate and natural 3D cues over 
a large FOV and a high angular resolution), and  

- social comfort (allowing for true eye contact, in a socially 
acceptable form factor, etc.).  

 
In order to address in an effective way both comfort and immersion 

challenges through improved hardware architectures and software 
developments, a deep understanding of the specific features and 
limitations of the human visual perception system is required. The need 
for a human-centric optical design process is emphasized, which would 
allow for the most comfortable headset design (wearable, visual, and 
social comfort) without compromising the user’s immersion 
experience (display, sensing, interaction). Matching the specifics of the 
display architecture to the human visual perception system is key to 
reducing the constraints on the hardware to acceptable levels, allowing 
for effective functional headset development and mass production at 
reasonable costs. 

The book also reviews the major optical architectures, optical 
building blocks, and related technologies that have been used in 
existing smart glasses, AR, VR, and MR products or could be used in 
the near future in novel XR headsets to overcome such challenges. 
Providing the user with a visual and sensory experience that addresses 
all aspects of comfort and immersion will eventually help to enable the 
market analysts’ wild expectations for the coming years in all headset 
declinations.  

The other requirement, which may even be more important than 
hardware, is contingent on the worldwide app-developer community to 
take full advantage of such novel hardware features to develop specific 
use cases for MR, especially for the consumer market. 

 
Bernard C. Kress 

January 2020 
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