Optical Architectures for Augmented-, Virtual-, and Mixed-Reality Headsets

Optical Architectures for Augmented-, Virtual-, and Mixed-Reality Headsets

Bernard C. Kress

SPIE PRESS Bellingham, Washington USA Library of Congress Cataloging-in-Publication Data

Names: Kress, Bernard C., author.

Title: Optical architectures for augmented-, virtual-, and mixed-reality headsets / Bernard C. Kress.

Description: Bellingham, Washington : SPIE, [2020] | Includes bibliographical references and index. | Summary: "This book is a timely review of the various optical architectures, display technologies, and building blocks for modern consumer, enterprise, and defense head-mounted displays for various applications, including smart glasses, smart eyewear, and virtual-reality, augmented-reality, and mixed-reality headsets. Special attention is paid to the facets of the human perception system and the need for a human-centric optical design process that allows for the most comfortable headset that does not compromise the user's experience. Major challenges-from wearability and visual comfort to sensory and display immersion--must be overcome to meet market analyst expectations, and the book reviews the most appropriate optical technologies to address such challenges, as well as the latest product implementations" – Provided by publisher.

Identifiers: LCCN 2019050125 (print) | LCCN 2019050126 (ebook) | ISBN 9781510634336 (paperback) | ISBN 9781510634343 (pdf)

Subjects: LCSH: Virtual reality headsets. | Optical instruments--Design and construction. | Augmented reality--Equipment and supplies.

Classification: LCC TK7882.T47 K74 2020 (print) | LCC TK7882.T47 (ebook) | DDC 006.8--dc23

LC record available at https://lccn.loc.gov/2019050125

LC ebook record available at https://lccn.loc.gov/2019050126

Published by SPIE P.O. Box 10 Bellingham, Washington 98227-0010 USA Phone: +1 360.676.3290 Email: books@spie.org Web: http://spie.org

Copyright © 2020 Society of Photo-Optical Instrumentation Engineers (SPIE) All rights reserved. No part of this publication may be reproduced or distributed in any form or by any means without written permission of the publisher.

The content of this book reflects the work and thought of the author. Every effort has been made to publish reliable and accurate information, but the publisher is not responsible for the validity of the information or for any outcomes resulting from reliance thereon.

Printed in the United States of America.

Last updated 13 January 2020

For updates to this book, visit http://spie.org and type "PM316" in the search field. Cover image "eye-Irina Shi," courtesy Shutterstock.

Contents

Pre	face	xi
	nowledgments	xiii
Act	onyms	xv
1	Introduction Word of Caution for the Rigorous Optical Engineer	1 4
2	Maturity Levels of the AR/VR/MR/Smart-Glasses Market	ts 5
3	The Emergence of MR as the Next Computing Platform3.1Today's Mixed-Reality Check	13 15
4	 Keys to the Ultimate MR Experience 4.1 Wearable, Vestibular, Visual, and Social Comfort 4.2 Display Immersion 4.3 Presence 	19 19 22 23
5	 Human Factors 5.1 The Human Visual System 5.1.1 Line of sight and optical axis 5.1.2 Lateral and longitudinal chromatic aberrations 5.1.3 Visual acuity 5.1.4 Stereo acuity and stereo disparity 5.1.5 Eye model 5.1.6 Specifics of the human-vision FOV 5.2 Adapting Display Hardware to the Human Visual System 5.3 Perceived Angular Resolution, FOV, and Color Uniformity 	25 25 26 27 29 29 30 32 34
6	Optical Specifications Driving AR/VR Architecture and Technology Choices 6.1 Display System 6.2 Eyebox 6.3 Even Deliaf and Vertex Distance	37 37 37
	6.3 Eye Relief and Vertex Distance	40

	6.4	Reconciling the Eyebox and Eye Relief	41
	6.5	Field of View	42
	6.6	Pupil Swim	43
	6.7	Display Immersion	44
	6.8	Stereo Overlap	44
	6.9	Brightness: Luminance and Illuminance	46
	6.10	Eye Safety Regulations	49
	6.11	Angular Resolution	50
	6.12	Foveated Rendering and Optical Foveation	52
7	Func	tional Optical Building Blocks of an MR Headset	57
	7.1	Display Engine	58
	7.	1.1 Panel display systems	59
	7.	1.2 Increasing the angular resolution in the time domain	63
	7.	1.3 Parasitic display effects: screen door, aliasing,	
		motion blur, and Mura effects	65
	7.	1.4 Scanning display systems	67
	7.	1.5 Diffractive display systems	69
	7.2	Display Illumination Architectures	71
	7.3	Display Engine Optical Architectures	74
	7.4	Combiner Optics and Exit Pupil Expansion	75
8	Inva	riants in HMD Optical Systems, and Strategies to	
	Over	come Them	77
	8.1	Mechanical IPD Adjustment	81
	8.2	Pupil Expansion	82
	8.3	Exit Pupil Replication	83
	8.4	Gaze-Contingent Exit Pupil Steering	84
	8.5	Exit Pupil Tiling	84
	8.6	Gaze-Contingent Collimation Lens Movement	85
	8.7	Exit Pupil Switching	86
9	Road	Imap for VR Headset Optics	89
	9.1	Hardware Architecture Migration	89
	9.2	Display Technology Migration	91
	9.3	Optical Technology Migration	92
10	Digit	al See-Through VR Headsets	97
11	Free	-Space Combiners	101
	11.1	Flat Half-Tone Combiners	101
	11.2	Single Large Curved-Visor Combiners	102

	11.3 Air Birdbath Combiners	104
	11.4 Cemented Birdbath–Prism Combiners	105
	11.5 See-Around Prim Combiners	106
	11.6 Single Reflector Combiners for Smart Glasses	107
	11.7 Off-Axis Multiple Reflectors Combiners	107
	11.8 Hybrid Optical Element Combiners	108
	11.9 Pupil Expansion Schemes in MEMS-Based	
	Free-Space Combiners	109
	11.10 Summary of Free-Space Combiner Architectures	112
	11.11 Compact, Wide-FOV See-Through Shell Displays	112
12	Freeform TIR Prism Combiners	115
	12.1 Single-TIR-Bounce Prism Combiners	115
	12.2 Multiple-TIR-Bounce Prism Combiners	116
13	Manufacturing Techniques for Free-Space	
	Combiner Optics	119
	13.1 Ophthalmic Lens Manufacturing	119
	13.2 Freeform Diamond Turning and Injection Molding	119
	13.3 UV Casting Process	123
	13.4 Additive Manufacturing of Optical Elements	124
	13.5 Surface Figures for Lens Parts Used in AR Imaging	125
14	Waveguide Combiners	127
	14.1 Curved Waveguide Combiners and Single Exit Pupil	128
	14.2 Continuum from Flat to Curved Waveguides and	
	Extractor Mirrors	129
	14.3 One-Dimensional Eyebox Expansion	131
	14.4 Two-Dimensional Eyebox Expansion	133
	14.5 Display Engine Requirements for 1D or 2D	
	EPE Waveguides	134
	14.6 Choosing the Right Waveguide Coupler Technology	136
	14.6.1 Refractive/reflective coupler elements	136
	14.6.2 Diffractive/holographic coupler elements	137
	14.6.3 Achromatic coupler technologies	146
	14.6.4 Summary of waveguide coupler technologies	148
15	Design and Modeling of Optical Waveguide Combiners 15.1 Waveguide Coupler Design, Optimization, and	151
	Modeling	151
	15.1.1 Coupler/light interaction model	151

	15.1.2	Increasing FOV by using the illumination	
		spectrum	154
	15.1.3	Increasing FOV by optimizing grating	
		coupler parameters	156
	15.1.4		
		waveguide combiner functionality	157
	15.2 High	-Level Waveguide-Combiner Design	158
	15.2.1	Choosing the waveguide coupler layout	
		architecture	158
	15.2.2	Building a uniform eyebox	159
	15.2.3		
		waveguide combiners	160
	15.2.4	Field spread in waveguide combiners	161
	15.2.5	Focus spread in waveguide combiners	162
	15.2.6	Polarization conversion in diffractive	
		waveguide combiners	165
	15.2.7	Propagating full-color images in the waveguide	
		combiner over a maximum FOV	165
	15.2.8		167
	15.2.9		
		display over the maximum allowed FOV	170
16	Manufactı	ring Techniques for Waveguide Combiners	175
-		er-Scale Micro- and Nano-Optics Origination	175
		Interference lithography	177
	16.1.2	Multilevel, direct-write, and grayscale	
		optical lithography	178
	16.1.3	Proportional ion beam etching	180
		er-Scale Optics Mass Replication	180
17	Smart Car	ntact Lenses and Beyond	185
1/		NRCE Lenses and Deyond NR Headsets to Smart Eyewear and	105
		-ocular Lenses	185
		act Lens Sensor Architectures	185
		act Lens Display Architectures	187
		t Contact Lens Fabrication Techniques	189
		t Contact Lens Challenges	189
••		-	
18		Accommodation Conflict Mitigation	191
		Mismatch in Fixed-Focus Immersive Displays	192
	18.1.1	Focus rivalry and VAC	193

	18.2	Management of VAC for Comfortable 3D Visual	
		Experience	193
	1	8.2.1 Stereo disparity and the horopter circle	195
	18.3	Arm's-Length Display Interactions	196
	18.4	Focus Tuning through Display or Lens Movement	197
	18.5	Focus Tuning with Micro-Lens Arrays	198
	18.6	Binary Focus Switch	200
	18.7	Varifocal and Multifocal Display Architectures	201
		Pin Light Arrays for NTE Display	205
		Retinal Scan Displays for NTE Display	206
) Light Field Displays	207
	18.11	l Digital Holographic Displays for NTE Display	210
19	Occl	usions	215
	19.1	Hologram Occlusion	215
	19.2	Pixel Occlusion, or "Hard-Edge Occlusion"	215
	19.3	Pixelated Dimming, or "Soft-Edge Occlusion"	216
20	Perij	pheral Display Architectures	217
21	Visio	on Prescription Integration	221
		Refraction Correction for Audio-Only Smart Glasses	222
		Refraction Correction in VR Headsets	223
	21.3	Refraction Correction in Monocular Smart Eyewear	223
	21.4	Refraction Correction in Binocular AR Headsets	225
	21.5	Super Vision in See-Through Mode	226
22	Sens	or Fusion in MR Headsets	227
	22.1	Sensors for Spatial Mapping	229
	2	22.1.1 Stereo cameras	229
	2	22.1.2 Structured-light sensors	230
		22.1.3 Time-of-flight sensors	230
		Head Trackers and 6DOF	231
		Motion-to-Photon Latency and Late-Stage Reprojection	
		SLAM and Spatial Anchors	233
		Eye, Gaze, Pupil, and Vergence Trackers	234
	-	Hand-Gesture Sensors	239
	22.7	Other Critical Hardware Requirements	240
	nclusi		241
0	References		
Ina	Index		

Preface

This book is a timely review and analysis of the various optical architectures, display technologies, and optical building blocks used today for consumer, enterprise, or defense head-mounted displays (HMDs) over a wide range of implementations, from smart glasses and smart eyewear to augmented-reality (AR), virtual-reality (VR), and mixed-reality (MR) headsets.

Such products have the potential to revolutionize how we work, communicate, travel, learn, teach, shop, and get entertained. An MR headset can come in either optical see-through mode (AR) or video-pass-through mode (VR). Extended reality (XR) is another acronym frequently used to refer to all declinations of MR.

Already, market analysts have very optimistic expectations on the return on investment in MR, for both enterprise and consumer markets. However, in order to meet such high expectations, several challenges must be addressed. One is the use case for each market segment, and the other one is the MR hardware development.

The intent of this book is not to review generic or specific AR/VR/MR use cases, or applications and implementation examples, as they have already been well defined for enterprise, defense, and R&D but only extrapolated for the burgeoning consumer market. Instead, it focuses on hardware issues, especially on the optics side.

Hardware architectures and technologies for AR and VR have made tremendous progress over the past five years, at a much faster pace than ever before. This faster development pace was mainly fueled by recent investment hype in start-ups and accelerated mergers and acquisitions by larger corporations.

The two main pillars that define most MR hardware challenges are immersion and comfort. Immersion can be defined as a multisensory perception feature (starting with audio, then display, gestures, haptics, etc.). Comfort comes in various declinations:

- wearable comfort (reducing weight and size, pushing back the center of gravity, addressing thermal issues, etc.),
- visual comfort (providing accurate and natural 3D cues over a large FOV and a high angular resolution), and
- **social comfort** (allowing for true eye contact, in a socially acceptable form factor, etc.).

In order to address in an effective way both comfort and immersion challenges through improved hardware architectures and software developments, a deep understanding of the specific features and limitations of the human visual perception system is required. The need for a human-centric optical design process is emphasized, which would allow for the most comfortable headset design (wearable, visual, and social comfort) without compromising the user's immersion experience (display, sensing, interaction). Matching the specifics of the display architecture to the human visual perception system is key to reducing the constraints on the hardware to acceptable levels, allowing for effective functional headset development and mass production at reasonable costs.

The book also reviews the major optical architectures, optical building blocks, and related technologies that have been used in existing smart glasses, AR, VR, and MR products or could be used in the near future in novel XR headsets to overcome such challenges. Providing the user with a visual and sensory experience that addresses all aspects of comfort and immersion will eventually help to enable the market analysts' wild expectations for the coming years in all headset declinations.

The other requirement, which may even be more important than hardware, is contingent on the worldwide app-developer community to take full advantage of such novel hardware features to develop specific use cases for MR, especially for the consumer market.

> Bernard C. Kress January 2020

Acknowledgments

This work has been made possible thanks to the precious help and input of many members of industry, research, and academia, all involved in AR/VR/MR and smart glasses over the past decades:

- Robin Held, Brian Guenter, Joel Kollin, and Andreas Georgiou, Microsoft Research
- Ishan Chatterjee, Maria Pace, David Rohn, Sergio Ortiz-Egea, Onur Akkaya, and Cyrus Banji, Microsoft HoloLens
- Dave Kessler, KesslerOptics.com
- Karl Guttag, kguttag.com
- Jerry Carollo, DayDream project, Google, Mountain View, CA
- Edward Tang, Avegant Corp., Redwood City, CA
- Mike Brown, SA Photonics Corp., Los Gatos, CA
- Igor Landau, Opticsworks.com
- Jim Melzer, Thales Visionix, Inc., Aurora, IL
- Ari Grobman, Lumus Ltd., Rehovot, Israel
- Stan Larroque, SL Process SA Lynx, Paris, France
- Khaled Sarayeddine, Optinvent SA, Rouen, France
- Norbert Kerwien, Zeiss AG, Oberkochen, Germany
- Christophe Peroz, Magic Leap Corp., Santa Clara, CA
- Prof. Thad Starner, Georgia Tech, Atlanta, GA
- Prof. Brian Schowengerdt, University of Washington, Seattle, WA, and Magic Leap founder
- Prof. Hong Hua, University of Arizona, Tucson, AZ
- Prof. Gordon Wetzstein, Computational Imaging Lab, Stanford University, CA
- Prof. Marty Banks, Berkeley University, CA

Acronyms

6DOFSix degrees of freedomAIArtificial intelligenceAMOLEDActive matrix organic light-emitting diodeARAugmented realityCDCritical dimension (lithography)CMOSComplementary metal-oxide semiconductorDFMDesign for manufacturingDLPDigital Light ProcessingDNNDeep neural networkDTMDiamond turning machineEBEyeboxEPEExit pupil expansionEPRExit pupil replicationEREye reliefETEye trackingGPUGraphical processing unitHeTHead-mounted (or helmet-mounted) displayHPUHolographic processing unitHTPSHigh-temperature poly-silicon (display)HUDHead-up displayICIntegrated circuitiLEDInorganic LED (array)IPSIn-plane switching (LCD)IVASIntegrated visual augmentation systemLBSLaser beam scannerLCLiquid crystalLCALateral chromatic aberrationLCDLiquid crystal displayLCOSLiquid crystal on siliconLDLaser diode	3DOF	Three degrees of freedom
AMOLEDActive matrix organic light-emitting diodeARAugmented realityCDCritical dimension (lithography)CMOSComplementary metal-oxide semiconductorDFMDesign for manufacturingDLPDigital Light ProcessingDNNDeep neural networkDTMDiamond turning machineEBEyeboxEPEExit pupil expansionEREye reliefETEye trackingGPUGraphical processing unitHeTHead-mounted (or helmet-mounted) displayHPUHolographic processing unitHTPSHigh-temperature poly-silicon (display)HUDHead-up displayICIntegrated circuitiLEDInorganic LED (array)IPSIn-plane switching (LCD)IVASIntegrated visual augmentation systemLBSLaser beam scannerLCLiquid crystalLCALateral chromatic aberrationLCDLiquid crystal displayLCOSLiquid crystal on silicon	6DOF	Six degrees of freedom
ARAugmented realityCDCritical dimension (lithography)CMOSComplementary metal-oxide semiconductorDFMDesign for manufacturingDLPDigital Light ProcessingDNNDeep neural networkDTMDiamond turning machineEBEyeboxEPEExit pupil expansionEREye reliefETEye trackingGPUGraphical processing unitHeTHead-mounted (or helmet-mounted) displayHPUHolographic processing unitHTPSHigh-temperature poly-silicon (display)HUDHead-up displayICIntegrated circuitiLEDInorganic LED (array)IPSIn-plane switching (LCD)IVASIntegrated visual augmentation systemLBSLaser beam scannerLCLiquid crystalLCALateral chromatic aberrationLCDLiquid crystal displayLCOSLiquid crystal on silicon	AI	Artificial intelligence
CDCritical dimension (lithography)CMOSComplementary metal-oxide semiconductorDFMDesign for manufacturingDLPDigital Light ProcessingDNNDeep neural networkDTMDiamond turning machineEBEyeboxEPEExit pupil expansionEPRExit pupil replicationEREye trackingGPUGraphical processing unitHeTHead-mounted (or helmet-mounted) displayHPUHolographic processing unitHTPSHigh-temperature poly-silicon (display)HUDHead-up displayICIntegrated circuitiLEDInorganic LED (array)IPSIntegrated visual augmentation systemLBSLaser beam scannerLCLiquid crystalLCALateral chromatic aberrationLCDLiquid crystal on silicon	AMOLED	Active matrix organic light-emitting diode
CMOSComplementary metal-oxide semiconductorDFMDesign for manufacturingDLPDigital Light ProcessingDNNDeep neural networkDTMDiamond turning machineEBEyeboxEPEExit pupil expansionEPRExit pupil replicationEREye reliefETEye trackingGPUGraphical processing unitHeTHead trackingHMDHead-mounted (or helmet-mounted) displayHPUHolographic processing unitHTPSHigh-temperature poly-silicon (display)HUDHead-up displayICIntegrated circuitiLEDInorganic LED (array)IPSIn-plane switching (LCD)IVASIntegrated visual augmentation systemLBSLaser beam scannerLCLiquid crystalLCALateral chromatic aberrationLCDLiquid crystal displayLCoSLiquid crystal on silicon	AR	Augmented reality
DFMDesign for manufacturingDLPDigital Light ProcessingDNNDeep neural networkDTMDiamond turning machineEBEyeboxEPEExit pupil expansionEPRExit pupil replicationEREye reliefETEye trackingGPUGraphical processing unitHeTHead-mounted (or helmet-mounted) displayHPUHolographic processing unitHTPSHigh-temperature poly-silicon (display)HUDHead-up displayICIntegrated circuitLEDInorganic LED (array)IPSIn-plane switching (LCD)IVASIntegrated visual augmentation systemLBSLaser beam scannerLCLiquid crystalLCALateral chromatic aberrationLCDLiquid crystal displayLCOSLiquid crystal on silicon	CD	Critical dimension (lithography)
DFMDesign for manufacturingDLPDigital Light ProcessingDNNDeep neural networkDTMDiamond turning machineEBEyeboxEPEExit pupil expansionEPRExit pupil replicationEREye reliefETEye trackingGPUGraphical processing unitHeTHead-mounted (or helmet-mounted) displayHPUHolographic processing unitHTPSHigh-temperature poly-silicon (display)HUDHead-up displayICIntegrated circuitLEDInorganic LED (array)IPSIn-plane switching (LCD)IVASIntegrated visual augmentation systemLBSLaser beam scannerLCLiquid crystalLCALateral chromatic aberrationLCDLiquid crystal displayLCOSLiquid crystal on silicon	CMOS	Complementary metal-oxide semiconductor
DNNDeep neural networkDTMDiamond turning machineEBEyeboxEPEExit pupil expansionEPRExit pupil replicationEREye reliefETEye trackingGPUGraphical processing unitHeTHead-mounted (or helmet-mounted) displayHPUHolographic processing unitHTPSHigh-temperature poly-silicon (display)HUDHead-up displayICIntegrated circuitiLEDInorganic LED (array)IPSIn-plane switching (LCD)IVASIntegrated visual augmentation systemLBSLaser beam scannerLCLiquid crystalLCDLiquid crystal displayLCOSLiquid crystal on silicon	DFM	
DTMDiamond turning machineEBEyeboxEPEExit pupil expansionEPRExit pupil replicationEREye reliefETEye trackingGPUGraphical processing unitHeTHead trackingHMDHead-mounted (or helmet-mounted) displayHPUHolographic processing unitHTPSHigh-temperature poly-silicon (display)HUDHead-up displayICIntegrated circuitILEDInorganic LED (array)IPSIn-plane switching (LCD)IVASIntegrated visual augmentation systemLBSLaser beam scannerLCLiquid crystalLCALateral chromatic aberrationLCDLiquid crystal displayLCoSLiquid crystal on silicon	DLP	Digital Light Processing
EBEyeboxEPEExit pupil expansionEPRExit pupil replicationEREye reliefETEye trackingGPUGraphical processing unitHeTHead trackingHMDHead-mounted (or helmet-mounted) displayHPUHolographic processing unitHTPSHigh-temperature poly-silicon (display)HUDHead-up displayICIntegrated circuitiLEDInorganic LED (array)IPSIn-plane switching (LCD)IVASIntegrated visual augmentation systemLBSLaser beam scannerLCLiquid crystalLCALateral chromatic aberrationLCDLiquid crystal displayLCoSLiquid crystal on silicon	DNN	Deep neural network
EPEExit pupil expansionEPRExit pupil replicationEREye reliefETEye trackingGPUGraphical processing unitHeTHead trackingHMDHead-mounted (or helmet-mounted) displayHPUHolographic processing unitHTPSHigh-temperature poly-silicon (display)HUDHead-up displayICIntegrated circuitiLEDInorganic LED (array)IPSIn-plane switching (LCD)IVASIntegrated visual augmentation systemLBSLaser beam scannerLCLiquid crystalLCALateral chromatic aberrationLCDLiquid crystal displayLCoSLiquid crystal on silicon	DTM	Diamond turning machine
EPRExit pupil replicationEREye reliefETEye trackingGPUGraphical processing unitHeTHead trackingHMDHead-mounted (or helmet-mounted) displayHPUHolographic processing unitHTPSHigh-temperature poly-silicon (display)HUDHead-up displayICIntegrated circuitiLEDInorganic LED (array)IPSIn-plane switching (LCD)IVASIntegrated visual augmentation systemLBSLaser beam scannerLCLiquid crystalLCALateral chromatic aberrationLCDLiquid crystal displayLCoSLiquid crystal on silicon	EB	Eyebox
EREye reliefETEye trackingGPUGraphical processing unitHeTHead trackingHMDHead-mounted (or helmet-mounted) displayHPUHolographic processing unitHTPSHigh-temperature poly-silicon (display)HUDHead-up displayICIntegrated circuitiLEDInorganic LED (array)IPSIn-plane switching (LCD)IVASIntegrated visual augmentation systemLBSLaser beam scannerLCLiquid crystalLCALateral chromatic aberrationLCDLiquid crystal displayLCoSLiquid crystal on silicon	EPE	Exit pupil expansion
ETEye trackingGPUGraphical processing unitHeTHead trackingHMDHead-mounted (or helmet-mounted) displayHPUHolographic processing unitHTPSHigh-temperature poly-silicon (display)HUDHead-up displayICIntegrated circuitiLEDInorganic LED (array)IPSIn-plane switching (LCD)IVASIntegrated visual augmentation systemLBSLaser beam scannerLCLiquid crystalLCALateral chromatic aberrationLCDLiquid crystal displayLCoSLiquid crystal on silicon	EPR	Exit pupil replication
GPUGraphical processing unitHeTHead trackingHMDHead-mounted (or helmet-mounted) displayHPUHolographic processing unitHTPSHigh-temperature poly-silicon (display)HUDHead-up displayICIntegrated circuitiLEDInorganic LED (array)IPSIn-plane switching (LCD)IVASIntegrated visual augmentation systemLBSLaser beam scannerLCLiquid crystalLCALateral chromatic aberrationLCDLiquid crystal displayLCoSLiquid crystal on silicon	ER	Eye relief
HeTHead trackingHMDHead-mounted (or helmet-mounted) displayHPUHolographic processing unitHTPSHigh-temperature poly-silicon (display)HUDHead-up displayICIntegrated circuitiLEDInorganic LED (array)IPSIn-plane switching (LCD)IVASIntegrated visual augmentation systemLBSLaser beam scannerLCLiquid crystalLCALateral chromatic aberrationLCDLiquid crystal displayLCoSLiquid crystal on silicon	ET	Eye tracking
HMDHead-mounted (or helmet-mounted) displayHPUHolographic processing unitHTPSHigh-temperature poly-silicon (display)HUDHead-up displayICIntegrated circuitiLEDInorganic LED (array)IPSIn-plane switching (LCD)IVASIntegrated visual augmentation systemLBSLaser beam scannerLCLiquid crystalLCALateral chromatic aberrationLCDLiquid crystal displayLCoSLiquid crystal on silicon	GPU	Graphical processing unit
HPUHolographic processing unitHTPSHigh-temperature poly-silicon (display)HUDHead-up displayICIntegrated circuitiLEDInorganic LED (array)IPSIn-plane switching (LCD)IVASIntegrated visual augmentation systemLBSLaser beam scannerLCLiquid crystalLCALateral chromatic aberrationLCDLiquid crystal displayLCoSLiquid crystal on silicon	HeT	
HTPSHigh-temperature poly-silicon (display)HUDHead-up displayICIntegrated circuitiLEDInorganic LED (array)IPSIn-plane switching (LCD)IVASIntegrated visual augmentation systemLBSLaser beam scannerLCLiquid crystalLCALateral chromatic aberrationLCDLiquid crystal displayLCoSLiquid crystal on silicon	HMD	Head-mounted (or helmet-mounted) display
HUDHead-up displayICIntegrated circuitiLEDInorganic LED (array)IPSIn-plane switching (LCD)IVASIntegrated visual augmentation systemLBSLaser beam scannerLCLiquid crystalLCALateral chromatic aberrationLCDLiquid crystal displayLCoSLiquid crystal on silicon	HPU	Holographic processing unit
ICIntegrated circuitiLEDInorganic LED (array)IPSIn-plane switching (LCD)IVASIntegrated visual augmentation systemLBSLaser beam scannerLCLiquid crystalLCALateral chromatic aberrationLCDLiquid crystal displayLCoSLiquid crystal on silicon	HTPS	High-temperature poly-silicon (display)
iLEDInorganic LED (array)IPSIn-plane switching (LCD)IVASIntegrated visual augmentation systemLBSLaser beam scannerLCLiquid crystalLCALateral chromatic aberrationLCDLiquid crystal displayLCoSLiquid crystal on silicon	HUD	Head-up display
IPSIn-plane switching (LCD)IVASIntegrated visual augmentation systemLBSLaser beam scannerLCLiquid crystalLCALateral chromatic aberrationLCDLiquid crystal displayLCoSLiquid crystal on silicon	IC	
IVASIntegrated visual augmentation systemLBSLaser beam scannerLCLiquid crystalLCALateral chromatic aberrationLCDLiquid crystal displayLCoSLiquid crystal on silicon	iLED	Inorganic LED (array)
LBSLaser beam scannerLCLiquid crystalLCALateral chromatic aberrationLCDLiquid crystal displayLCoSLiquid crystal on silicon	IPS	In-plane switching (LCD)
LCLiquid crystalLCALateral chromatic aberrationLCDLiquid crystal displayLCoSLiquid crystal on silicon	IVAS	
LCALateral chromatic aberrationLCDLiquid crystal displayLCoSLiquid crystal on silicon		
LCDLiquid crystal displayLCoSLiquid crystal on silicon	LC	Liquid crystal
LCoS Liquid crystal on silicon		
1 5		
LD Laser diode	LCoS	
	LD	Laser diode

LED	Light-emitting diode
LSR	Late-stage reprojection
LTPS	Low-temperature poly-silicon (display)
M&A	Mergers and acquisitions
MEMS	Micro-electro-mechanical systems
MLA	Micro-lens array
MR	Mixed reality
MTF	Modulation transfer function
MTP	Motion-to-photon (latency)
mu-OLED	Micro-OLED (panel) on silicon backplane
NTE	Near-to-eye (display)
OLCD	Organic liquid crystal display
OLED	Organic LED (panel)
OST-HMD	Optical see-through HMD
PDLC	Polymer-dispersed liquid crystal
PPD	Pixels per degree
PPI	Pixels per inch
QLCD	Quantum-dot liquid crystal display
RCWA	Rigorous coupled wave analysis
ROI	Return on investment
RSD	Retinal scanning display
SLAM	Simultaneous location and mapping
SLED	Super-luminescent emitting diode
UWB	Ultra-wide-band (chip)
VAC	Vergence-accommodation conflict
VCSEL	Vertical cavity surface emitting laser
VD	Vertex distance
VLSI	Very-large-scale integration
VR	Virtual reality
VRD	Virtual retinal display
VST-HMD	Video see-through (HMD)
VD	Ender 1, 1 and 1 dec

XR Extended reality