We present the first full-array optical characterizations of the 280 GHz aluminum-based superconducting microwave kinetic inductance detector (MKID) arrays developed at NIST, CO, USA for the CCAT Collaboration for observing galactic ecology, Sunyaev-Zel'dovich effect, galaxy evolution, and line intensity mapping. The main advantage of aluminum MKIDs is their lower 1/f noise compared to the alternative choice of titanium-nitride (TiN) MKIDs, which would reduce systematic drifts when mapping the sky. We will present the spectral response, polarization characteristics, detector efficiency, and noise equivalent power (NEP) under the relevant conditions for these detectors. Two aluminum and one TiN MKID arrays will form the detector arrays in the 280 GHz instrument module of the Prime-Cam. First light observations are expected in 2025.
|