Immunothrombosis is a critical aspect affecting patients in acute care settings, especially in conditions involving infection, trauma, or severe inflammation. The interplay between hemostasis, innate immunity, and inflammation becomes highly relevant in these scenarios and can significantly impact patient outcomes. Blood cell aggregates are potential functional cellular biomarkers for prognostic and predictive biomarkers of immunothrombosis but require, due to the low logistical stability of the aggregates, a point-of-care (POC) solution for standardizable diagnostics. Here, we present a POC-compatible method that combines a quantitative phase imaging method with a microfluidic chip and a customized image analysis, resulting in a label- and sample preparation-free high-throughput imaging flow cytometer. We optimized our conditions to mimic the flow conditions in vessels at a low shear stress of ~1.000 s−1. In the acute care uses case, we demonstrate the dynamics of blood cell aggregates in critical care patients and discuss the potential impact on clinical workflows.
|