Paper
22 July 2016 Every photon counts: improving low, mid, and high-spatial frequency errors on astronomical optics and materials with MRF
Chris Maloney, Jean Pierre Lormeau, Paul Dumas
Author Affiliations +
Abstract
Many astronomical sensing applications operate in low-light conditions; for these applications every photon counts. Controlling mid-spatial frequencies and surface roughness on astronomical optics are critical for mitigating scattering effects such as flare and energy loss. By improving these two frequency regimes higher contrast images can be collected with improved efficiency. Classically, Magnetorheological Finishing (MRF) has offered an optical fabrication technique to correct low order errors as well has quilting/print-through errors left over in light-weighted optics from conventional polishing techniques. MRF is a deterministic, sub-aperture polishing process that has been used to improve figure on an ever expanding assortment of optical geometries, such as planos, spheres, on and off axis aspheres, primary mirrors and freeform optics. Precision optics are routinely manufactured by this technology with sizes ranging from 5-2,000mm in diameter. MRF can be used for form corrections; turning a sphere into an asphere or free form, but more commonly for figure corrections achieving figure errors as low as 1nm RMS while using careful metrology setups.

Recent advancements in MRF technology have improved the polishing performance expected for astronomical optics in low, mid and high spatial frequency regimes. Deterministic figure correction with MRF is compatible with most materials, including some recent examples on Silicon Carbide and RSA905 Aluminum. MRF also has the ability to produce ‘perfectly-bad’ compensating surfaces, which may be used to compensate for measured or modeled optical deformation from sources such as gravity or mounting. In addition, recent advances in MRF technology allow for corrections of mid-spatial wavelengths as small as ~1mm simultaneously with form error correction. Efficient midspatial frequency corrections make use of optimized process conditions including raster polishing in combination with a small tool size. Furthermore, a novel MRF fluid, called C30, has been developed to finish surfaces to ultra-low roughness (ULR) and has been used as the low removal rate fluid required for fine figure correction of mid-spatial frequency errors. This novel MRF fluid is able to achieve <4Å RMS on Nickel-plated Aluminum and even <1.5Å RMS roughness on Silicon, Fused Silica and other materials. C30 fluid is best utilized within a fine figure correction process to target mid-spatial frequency errors as well as smooth surface roughness 'for free' all in one step.

In this paper we will discuss recent advancements in MRF technology and the ability to meet requirements for precision optics in low, mid and high spatial frequency regimes and how improved MRF performance addresses the need for achieving tight specifications required for astronomical optics.
© (2016) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Chris Maloney, Jean Pierre Lormeau, and Paul Dumas "Every photon counts: improving low, mid, and high-spatial frequency errors on astronomical optics and materials with MRF", Proc. SPIE 9912, Advances in Optical and Mechanical Technologies for Telescopes and Instrumentation II, 99123Y (22 July 2016); https://doi.org/10.1117/12.2233019
Lens.org Logo
CITATIONS
Cited by 1 scholarly publication.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Magnetorheological finishing

Polishing

Optical spheres

Astronomical imaging

Silicon carbide

Optics manufacturing

Photovoltaics

Back to Top