The presented photothermal system integrates a high brightness quantum cascade laser that can be tuned continuously over a spectral range of interest with a fiber probe laser. Fiber laser technology features a compact footprint and offers robust performance metrics and reduced sensitivity to environmental perturbations compared to free-space laser configurations. In systematic spectroscopy studies where the probe laser parameters were modified, we demonstrate that the signal-to-noise ratio can be significantly enhanced by utilizing a mode-locked laser compared to a continuous-wave laser. With a raster-scanning approach, photothermal spectroscopy can be extended to hyperspectral label-free mid-infrared imaging to combine spectral content with localized sample details. By tuning the pump laser to the amide-I absorption band around 1650 cm-1 in biological tissue samples, the spectral characteristics can provide insight into the secondary structure of proteins (e.g. amyloid plaques; alpha-helix, beta-sheet). We present the versatility of our mid-IR photothermal system by analyzing histopathological tissue sections of cancerous tissue in a non-contact, non-destructive approach with good sensitivity. |
ACCESS THE FULL ARTICLE
No SPIE Account? Create one
CITATIONS
Cited by 3 scholarly publications.
Continuous wave operation
Signal to noise ratio
Spectroscopy
Tissue optics
Imaging spectroscopy
Mid-IR
Tumors