Paper
29 April 2010 Landmine detection using ensemble discrete hidden Markov models with context dependent training methods
Anis Hamdi, Oualid Missaoui, Hichem Frigui, Paul Gader
Author Affiliations +
Abstract
We propose a landmine detection algorithm that uses ensemble discrete hidden Markov models with context dependent training schemes. We hypothesize that the data are generated by K models. These different models reflect the fact that mines and clutter objects have different characteristics depending on the mine type, soil and weather conditions, and burial depth. Model identification is based on clustering in the log-likelihood space. First, one HMM is fit to each of the N individual sequence. For each fitted model, we evaluate the log-likelihood of each sequence. This will result in an N x N log-likelihood distance matrix that will be partitioned into K groups. In the second step, we learn the parameters of one discrete HMM per group. We propose using and optimizing various training approaches for the different K groups depending on their size and homogeneity. In particular, we will investigate the maximum likelihood, and the MCE-based discriminative training approaches. Results on large and diverse Ground Penetrating Radar data collections show that the proposed method can identify meaningful and coherent HMM models that describe different properties of the data. Each HMM models a group of alarm signatures that share common attributes such as clutter, mine type, and burial depth. Our initial experiments have also indicated that the proposed mixture model outperform the baseline HMM that uses one model for the mine and one model for the background.
© (2010) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Anis Hamdi, Oualid Missaoui, Hichem Frigui, and Paul Gader "Landmine detection using ensemble discrete hidden Markov models with context dependent training methods", Proc. SPIE 7664, Detection and Sensing of Mines, Explosive Objects, and Obscured Targets XV, 76642J (29 April 2010); https://doi.org/10.1117/12.852256
Lens.org Logo
CITATIONS
Cited by 1 scholarly publication.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Mining

Land mines

Data modeling

Sensors

Expectation maximization algorithms

General packet radio service

Ground penetrating radar

Back to Top