Paper
27 February 2007 Adaptive multi-histogram equalization using human vision thresholding
Author Affiliations +
Proceedings Volume 6497, Image Processing: Algorithms and Systems V; 64970G (2007) https://doi.org/10.1117/12.704474
Event: Electronic Imaging 2007, 2007, San Jose, CA, United States
Abstract
Image enhancement is the task of applying certain alterations to an input image such as to obtain a more visually pleasing image. The alteration usually requires interpretation and feedback from a human evaluator of the output resulting image. Therefore, image enhancement is considered a difficult task when attempting to automate the analysis process and eliminate the human intervention. Furthermore, images that do not have uniform brightness pose a challenging problem for image enhancement systems. Different kinds of histogram equalization techniques have been employed for enhancing images that have overall improper illumination or are over/under exposed. However, these techniques perform poorly for images that contain various regions of improper illumination or improper exposure. In this paper, we introduce new human vision model based automatic image enhancement techniques, multi-histogram equalization as well as local and adaptive algorithms. These enhancement algorithms address the previously mentioned shortcomings. We present a comparison of our results against many current local and adaptive histogram equalization methods. Computer simulations are presented showing that the proposed algorithms outperform the other algorithms in two important areas. First, they have better performance, both in terms of subjective and objective evaluations, then that currently used algorithms on a series of poorly illuminated images as well as images with uniform and non-uniform illumination, and images with improper exposure. Second, they better adapt to local features in an image, in comparison to histogram equalization methods which treat the images globally.
© (2007) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Eric Wharton, Karen Panetta, and Sos Agaian "Adaptive multi-histogram equalization using human vision thresholding", Proc. SPIE 6497, Image Processing: Algorithms and Systems V, 64970G (27 February 2007); https://doi.org/10.1117/12.704474
Lens.org Logo
CITATIONS
Cited by 5 scholarly publications.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Image enhancement

Image processing

Image segmentation

Visualization

Laser induced plasma spectroscopy

Visual system

Image quality

RELATED CONTENT

A logarithmic measure of image enhancement
Proceedings of SPIE (May 02 2006)
Human visual-system-based image enhancement
Proceedings of SPIE (May 02 2007)

Back to Top