Paper
14 June 2006 The Joint Efficient Dark-energy Investigation (JEDI): measuring the cosmic expansion history from type Ia supernovae
M. M. Phillips, Peter Garnavich, Yun Wang, David Branch, Edward Baron, Arlin Crotts, J. Craig Wheeler, Edward Cheng, Mario Hamuy
Author Affiliations +
Abstract
JEDI (Joint Efficient Dark-energy Investigation) is a candidate implementation of the NASA-DOE Joint Dark Energy Mission (JDEM). JEDI will probe dark energy in three independent methods: (1) type Ia supernovae, (2) baryon acoustic oscillations, and (3) weak gravitational lensing. In an accompanying paper, an overall summary of the JEDI mission is given. In this paper, we present further details of the supernova component of JEDI. To derive model-independent constraints on dark energy, it is important to precisely measure the cosmic expansion history, H(z), in continuous redshift bins from z ~ 0-2 (the redshift range in which dark energy is important). SNe Ia at z > 1 are not readily accessible from the ground because the bulk of their light has shifted into the near-infrared where the sky background is overwhelming; hence a space mission is required to probe dark energy using SNe. Because of its unique near-infrared wavelength coverage (0.8-4.2 μm), JEDI has the advantage of observing SNe Ia in the rest frame J band for the entire redshift range of 0 < z <2, where they are less affected by dust, and appear to be nearly perfect standard candles. During the first year of JEDI operations, spectra and light curves will be obtained for ~4,000 SNe Ia at z < 2. The resulting constraints on dark energy are discussed, with special emphasis on the improved precision afforded by the rest frame near-infrared data.
© (2006) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
M. M. Phillips, Peter Garnavich, Yun Wang, David Branch, Edward Baron, Arlin Crotts, J. Craig Wheeler, Edward Cheng, and Mario Hamuy "The Joint Efficient Dark-energy Investigation (JEDI): measuring the cosmic expansion history from type Ia supernovae", Proc. SPIE 6265, Space Telescopes and Instrumentation I: Optical, Infrared, and Millimeter, 62652A (14 June 2006); https://doi.org/10.1117/12.670882
Lens.org Logo
CITATIONS
Cited by 2 scholarly publications.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Baryon acoustic oscillations

Galactic astronomy

Photometry

Calibration

Hubble Space Telescope

Imaging spectroscopy

Space operations

RELATED CONTENT


Back to Top