Paper
29 July 2004 Comparative study on semi-active control algorithms for piezoelectric friction dampers
Chaoqiang Chen, Genda Chen
Author Affiliations +
Abstract
A semi-active Tri-D algorithm combining Coulomb, Reid and viscous damping mechanisms has recently been developed by the authors to drive piezoelectric friction dampers. The objective of this study is to analytically compare its performance with those of bang-bang control, clipped-optimal control, modulated homogeneous control, and a modified clipped-optimal control. Two far-field and two near-field historical earthquake records with various intensities and dominant frequencies were used in this study. All algorithms were evaluated with a ¼ scale 3-story frame structure in terms of reductions in peak inter-story drift ratio and peak floor acceleration. A piezoelectric friction damper was considered to be installed between a bracing support and the first floor of the frame structure. Both advantages and disadvantages of each control algorithm were discussed with numerical simulations. At near resonance, both bang-bang and clipped-optimal algorithms are more effective in drift reduction, and the modified clipped-optimal algorithm is more effective in acceleration reduction than both Tri-D and modulated homogeneous algorithms. But the latter requires less control force on the average. For a non-resonant case, the Tri-D and modulated homogeneous algorithms are more effective in acceleration reduction than others even with less control force required. Overall, the Tri-D and modulated homogeneous controls are effective in response reduction, adaptive, and robust to earthquake characteristics.
© (2004) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Chaoqiang Chen and Genda Chen "Comparative study on semi-active control algorithms for piezoelectric friction dampers", Proc. SPIE 5391, Smart Structures and Materials 2004: Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems, (29 July 2004); https://doi.org/10.1117/12.539559
Lens.org Logo
CITATIONS
Cited by 1 scholarly publication.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Earthquakes

Modulation

Control systems

Algorithm development

Numerical simulations

Electroluminescence

Near field

Back to Top