Paper
15 July 2002 Comparison of amplified piezoelectric actuators based on topological optimization
Author Affiliations +
Abstract
Various solid-state mechanisms for the amplification of the small stroke, produced by piezoelectric materials, have been presented in the literature. A designer tasked with designing a device such as a micro-positioner must choose between these mechanisms. In this paper, the use of topological optimization to produce characteristic functions for amplification mechanisms, forming a basis for comparison of different designs, is investigated. The optimization problem was formulated as a variable thickness sheet problem where the stiffness was maximized subject to a constraint on the free stoke. Apart from specifying the design domain, no volume constraints were imposed. The design domain, comprising a piezoelectric and a metallic region, was discretized with eight-noded, plane-strain finite elements. This formulation was found to produce designs with negligible intermediate thickness. These designs are non-unique and repeatedly solving the problem from different starting material distributions results in slightly different 'optimal' stiffness values. The resulting maximum stiffness can be plotted as a function of free stroke producing a curve that is characteristic of the amplification mechanism. Irregularities in this curve would indicate that a local maximum with poor performance has been found. The method is demonstrated by computing the characteristic curve for two amplifier mechanisms.
© (2002) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Philip W. Loveday "Comparison of amplified piezoelectric actuators based on topological optimization", Proc. SPIE 4701, Smart Structures and Materials 2002: Smart Structures and Integrated Systems, (15 July 2002); https://doi.org/10.1117/12.474679
Lens.org Logo
CITATIONS
Cited by 3 scholarly publications.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Actuators

Amplifiers

Systems modeling

Chemical elements

Optimization (mathematics)

Solid state electronics

Ceramics

Back to Top