Paper
21 September 2001 Multiscale local discriminatory feature representations for automatic face recognition
Author Affiliations +
Proceedings Volume 4550, Image Extraction, Segmentation, and Recognition; (2001) https://doi.org/10.1117/12.441440
Event: Multispectral Image Processing and Pattern Recognition, 2001, Wuhan, China
Abstract
In automatic face recognition, strong discriminatory feature extraction is very important. In this paper a new approach to extract powerful local discriminatory features is introduced. Instead of using traditional wavelet features, the authors examine multiscale local statistical characteristics to achieve strong discriminatory features based on important wavelet subbands. Meanwhile, to efficiently utilize potentials for the extracted multi- MLDFs, an integrated recognition system is developed, where multi-classifiers first conduct the corresponding coarse classification, then a decision fusion scheme by associating different priorities with each of the classifiers makes the final recognition. Our experiments showed this technique achieves superior performance to popular methods such as PCA/Eigenface, HMM, wavelet features, and neural networks, etc.
© (2001) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Baoming Hong, Chi Hau Chen, and Songmei Tang "Multiscale local discriminatory feature representations for automatic face recognition", Proc. SPIE 4550, Image Extraction, Segmentation, and Recognition, (21 September 2001); https://doi.org/10.1117/12.441440
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Wavelets

Databases

Facial recognition systems

Feature extraction

System integration

Image classification

Unattended ground sensors

RELATED CONTENT

Emotion-independent face recognition
Proceedings of SPIE (December 29 2000)
Gender classification system in uncontrolled environments
Proceedings of SPIE (January 24 2011)
A lightweight image retrieval system for paintings
Proceedings of SPIE (January 17 2005)

Back to Top