This study examines the atmospheric boundary layer (ABL) structure and temperature inversion characteristics in the Chiayi region of Taiwan during wintertime, using high vertical and temporal resolution data from a microwave radiometer (MWR). The results show that surface-based inversions (SBIs) exhibit a distinct diurnal pattern, with the frequency of SBIs being much higher at night, reaching nearly 100% between 05:00 and 08:00 LST, primarily due to surface longwave cooling. Temperature inversions are associated with surface conditions of higher relative humidity, lower temperatures, and weaker wind speeds, which contribute to the stability of the inversion layer and inhibit vertical mixing. Interestingly, the mixing ratio remains stable despite the presence of inversions, suggesting that the increase in relative humidity during inversion events is likely due to surface cooling or weak winds, rather than an increase in water vapor. Further flux analysis is needed to confirm the causes of the increase in relative humidity.
|