PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.
We describe an optical method for obtaining inregister incoherent superposition of 2D diffraction patterns in all the planes parallels to the exit pupil. This means that the consonance is independent of the plane of detection. 1 . DISCUSSION If we illuminate with a point source a screen with an aplitud transmittance propor tional to the Montgomery rings'' then its Fraunhofer diffraction pattern will appear pen dicaly along the optical axis2 . A second incoherent point source illuminating the same screen on axis but in a different position will produce another set of self images. Is easy to show that if its position fits with one of the self images of the first point source then both sets are in consonance. Exactly the same procedure can be applied to a third source a fourth source an so on. More over not only the self images are in con sonance but all the diffraction patterns associated with the screen. This means that there are different position for a point source along the axis that produces exactly the same diffraction field of these screen. If we multiply the Montgomery ring by a second amplitud screen then the resultant pat tern will exhibits the same behavior. We call Montgomery patterns to the diffraction pat terns produced in both cases. In this sense if we choose one of those screens (Montgome ry rings x amplitud screen)
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.
The alert did not successfully save. Please try again later.
Eduardo Tepichin-Rodriguez, Pedro Andres, Juan Gutierrez Ibarra, "Continuous axial consonance of Montgomery patterns," Proc. SPIE 1319, Optics in Complex Systems, (1 July 1990); https://doi.org/10.1117/12.22300