Multimodal imaging has shown great potential in cancer research by concurrently providing anatomical, functional, and molecular information in live, intact animals. During preclinical imaging of small animals like mice, anesthesia is required to prevent movement and improve image quality. However, their high surface area-to-body weight ratio predisposes mice, particularly nude mice, to hypothermia under anesthesia. To address this, we developed a detachable mouse scanning table with heating function for hybrid x-ray and optical imaging modalities, without introducing metal artifacts. Specifically, we employed Polylactic Acid (PLA) 3D printing technology to fabricate a customized scanning table, compatible with both CT and optical imaging systems. This innovation enables seamless transportation of the table between different imaging setups, while its detachable design facilitates maintaining a clutter-free operational environment within the imaging systems. This is crucial for accommodating various projects within the same scanner. The table features positioned fixation points to secure mice, ensuring positional consistency across imaging modalities. Additionally, we integrated a carbon nanotube-based heating pad into the table to regulate the body temperature of mice during examinations, providing an ethical and effective temperature maintenance solution. Our evaluations confirmed the table’s ability to maintain a 30g water bag at approximately 40℃, effectively regulating mouse body temperature to an optimal 36℃ during preclinical imaging sessions. This scanning table serves as a useful tool in preclinical cancer research, offering a versatile tool that upholds animal welfare standards.
|