Liger is an adaptive optics (AO) fed imager and integral field spectrograph (IFS) designed to take advantage of the Keck All-sky Precision Adaptive-optics (KAPA) upgrade to the Keck I telescope. Liger adapts the design of the InfraRed Imaging Spectrograph (IRIS) for the Thirty Meter Telescope (TMT) to Keck by implementing a new imager and re-imaging optics. The performance of the imager is critical as it sequentially feeds the spectrograph and contains essential components such as the pupil wheel, filter wheel, and pupil viewing camera. We present the design and structural analysis of the Liger imager optical assembly including static, modal, and thermal simulations. We present the fabrication as well as the full assembly and characterization plan. The imager will be assembled bench-top in a clean room utilizing a coordinate-measuring machine (CMM) for warm alignment. To ensure optimal performance, the imager will be characterized in a test cryostat before integration with the full Liger instrument. This comprehensive approach to characterization ensures the precision and reliability of the imager, enhancing the observational capabilities of Liger and W.M. Keck Observatory.
|