Poster
28 August 2024 Thesis: optimizing gravitational wave detection sensitivity in ALIGO: investigating scattering noise origins, noise subtraction, data reduction, and detector characterization for improved precision
Kaylah McGowan, Gabriela Gonzalez, Karan Jani, Kelly Holley-Bockelmann, Shania Nichols
Author Affiliations +
Conference Poster
Abstract
Scattered light in Advanced LIGO disrupts gravitational wave signals, hindering detections. It causes low-frequency noise (20-40Hz) that interferes with the frequency band where gravitational detections occur (10-100Hz). Identifying this noise as arches in the time-frequency plane is a critical tool to tracking the scattered light surface. Gravitational waves, predicted by Einstein's General Theory of Relativity, reveal hidden cosmic phenomena. LIGO's upgrades expanded its detection range to 150 Mpc for binary neutron star detections, further increasing the need for detector characterization. To further increase sensitivity, we investigate scattering surfaces with the intent to mitigate scattered light effects. We have created an algorithm used with GravitySpy's machine learning tool to filter noise and study arch properties. Observation Run 4 (O4) data shows that, scattered light occurrences decreased at LIGO Livingston Observatory (LLO), but their characteristics changed. The algorithm accurately calculates arch velocity and frequency in over 90% of cases. Future research will apply it to LIGO Hanford (LHO) data, and we plan to compare the FFT method with the HHT method.
(2024) Published by SPIE. Downloading of the abstract is permitted for personal use only.
Kaylah McGowan, Gabriela Gonzalez, Karan Jani, Kelly Holley-Bockelmann, and Shania Nichols "Thesis: optimizing gravitational wave detection sensitivity in ALIGO: investigating scattering noise origins, noise subtraction, data reduction, and detector characterization for improved precision", Proc. SPIE 13095, Optical and Infrared Interferometry and Imaging IX, 1309531 (28 August 2024); https://doi.org/10.1117/12.3012779
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
LIGO

Light scattering

Scattered light

Detection and tracking algorithms

Laser frequency

Signal detection

Data modeling

Back to Top