Presentation + Paper
31 August 2022 A broadband x-ray imaging spectroscopy in the 2030s: the FORCE mission
Koji Mori, Takeshi G. Tsuru, Kazuhiro Nakazawa, Yoshihiro Ueda, Shin Watanabe, Takaaki Tanaka, Manabu Ishida, Hironori Matsumoto, Hisamitsu Awaki, Hiroshi Murakami, Masayoshi Nobukawa, Ayaki Takeda, Yasushi Fukazawa, Hiroshi Tsunemi, Tadayuki Takahashi, Ann Hornschemeier, Takashi Okajima, William W. Zhang, Brian J. Williams, Tonia Venters, Kristin Madsen, Mihoko Yukita, Hiroki Akamatsu, Aya Bamba, Teruaki Enoto, Yutaka Fujita, Akihiro Furuzawa, Kouichi Hagino, Kosei Ishimura, Masayuki Itoh, Tetsu Kitayama, Shogo Kobayashi, Takayoshi Kohmura, Aya Kubota, Misaki Mizumoto, Tsunefumi Mizuno, Hiroshi Nakajima, Kumiko K. Nobukawa, Hirofumi Noda, Hirokazu Odaka, Naomi Ota, Toshiki Sato, Megumi Shidatsu, Hiromasa Suzuki, Hiromitsu Takahashi, Atsushi Tanimoto, Yukikatsu Terada, Yuichi Terashima, Hiroyuki Uchida, Yasunobu Uchiyama, Hiroya Yamaguchi, Yoichi Yatsu
Author Affiliations +
Abstract
In this multi-messenger astronomy era, all the observational probes are improving their sensitivities and overall performance. The Focusing on Relativistic universe and Cosmic Evolution (FORCE) mission, the product of a JAXA/NASA collaboration, will reach a 10 times higher sensitivity in the hard X-ray band (E > 10 keV) in comparison with any previous hard x-ray missions, and provide simultaneous soft x-ray coverage. FORCE aims to be launched in the early 2030s, providing a perfect hard x-ray complement to the ESA flagship mission Athena. FORCE will be the most powerful x-ray probe for discovering obscured/hidden black holes and studying high energy particle acceleration in our Universe and will address how relativistic processes in the universe are realized and how these affect cosmic evolution. FORCE, which will operate over 1–79 keV, is equipped with two identical pairs of supermirrors and wideband x-ray imagers. The mirror and imager are connected by a high mechanical stiffness extensible optical bench with alignment monitor systems with a focal length of 12 m. A light-weight silicon mirror with multi-layer coating realizes a high angular resolution of < 15′′ in half-power diameter in the broad bandpass. The imager is a hybrid of a brand-new SOI-CMOS silicon-pixel detector and a CdTe detector responsible for the softer and harder energy bands, respectively. FORCE will play an essential role in the multi-messenger astronomy in the 2030s with its broadband x-ray sensitivity.
Conference Presentation
© (2022) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Koji Mori, Takeshi G. Tsuru, Kazuhiro Nakazawa, Yoshihiro Ueda, Shin Watanabe, Takaaki Tanaka, Manabu Ishida, Hironori Matsumoto, Hisamitsu Awaki, Hiroshi Murakami, Masayoshi Nobukawa, Ayaki Takeda, Yasushi Fukazawa, Hiroshi Tsunemi, Tadayuki Takahashi, Ann Hornschemeier, Takashi Okajima, William W. Zhang, Brian J. Williams, Tonia Venters, Kristin Madsen, Mihoko Yukita, Hiroki Akamatsu, Aya Bamba, Teruaki Enoto, Yutaka Fujita, Akihiro Furuzawa, Kouichi Hagino, Kosei Ishimura, Masayuki Itoh, Tetsu Kitayama, Shogo Kobayashi, Takayoshi Kohmura, Aya Kubota, Misaki Mizumoto, Tsunefumi Mizuno, Hiroshi Nakajima, Kumiko K. Nobukawa, Hirofumi Noda, Hirokazu Odaka, Naomi Ota, Toshiki Sato, Megumi Shidatsu, Hiromasa Suzuki, Hiromitsu Takahashi, Atsushi Tanimoto, Yukikatsu Terada, Yuichi Terashima, Hiroyuki Uchida, Yasunobu Uchiyama, Hiroya Yamaguchi, and Yoichi Yatsu "A broadband x-ray imaging spectroscopy in the 2030s: the FORCE mission", Proc. SPIE 12181, Space Telescopes and Instrumentation 2022: Ultraviolet to Gamma Ray, 1218122 (31 August 2022); https://doi.org/10.1117/12.2628772
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
X-rays

Hard x-rays

Galactic astronomy

Mirrors

Sensors

Physics

Silicon

RELATED CONTENT

The Hard X ray Imager (HXI) for the ASTRO H...
Proceedings of SPIE (September 17 2012)
Hard x-ray imager for the NeXT mission
Proceedings of SPIE (June 15 2006)
Hard x-ray imaging system for XEUS
Proceedings of SPIE (July 15 2008)
Tomography with high resolution
Proceedings of SPIE (January 07 2002)
Hard x-ray imager (HXI) for the ASTRO-H Mission
Proceedings of SPIE (July 29 2010)
The ASTRO-H Mission
Proceedings of SPIE (July 30 2010)

Back to Top