PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.
Here we develop a theory of bound states in the continuum (BICs) in multipolar lattices – periodic arrays of resonant multipoles. We show that off-Γ BIC can be pinned in the k-space in this multipole approximation. The developed approach set a direct relation between the topological charge of BIC and the asymptotic behavior of Q-factor of the radiative modes in its vicinity.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.
The alert did not successfully save. Please try again later.
Sergey Gladyshev, Artem Shalev, Kristina Frizyuk, Konstantin Ladutenko, Andrey Bogdanov, "Bound states in the continuum in the multipole approximation," Proc. SPIE 12130, Metamaterials XIII, 121300G (24 May 2022); https://doi.org/10.1117/12.2621078