Femtosecond laser micromachining (FLM) is considered today a key technology for the fabrication of high-quality photonic integrated circuits, especially when a 3D geometry is required. However, when a thermal phase shifter is exploited to reconfigure an FLM device, its operation requires many hundreds of milliwatts. This issue strongly limits the scalability of these circuits. With this work, we present a new FLM fabrication process that takes advantage of thermally insulating microstructures (i.e. trenches and bridge waveguides) to demonstrate low propagation losses (0.29 dB/cm at 1550 nm), along with a power dissipation for a 2π phase shift down to 37 mW.
|