We compare the distribution of hafnia chemistries as a function of sun and planet position in an ion beam sputtering system. Hafnia film chemistries were investigated both without and with planetary rotation. In the former case, the film thickness, stoichiometries and entrapped argon varied drastically as a function of sun position, with one sun position exhibiting high entrapped argon content. With full planetary rotation used during deposition, the film stoichiometry is nearly ideal with 6% entrapped argon content. It is observed that the center of the planets is an exception, with a slightly metallic stoichiometry and high entrapped argon. Interestingly, all hafnia optical films produced in this study exhibit an inverse relationship between oxygen content and entrapped argon.
|