Presentation
18 September 2018 Optimization of nanostructured high efficiency perovskite/c-Si tandem solar cells via numerical simulation (Conference Presentation)
Author Affiliations +
Abstract
We present optical simulations for a tandem solar cell consisting of a nanostructured thin-film perovskite top cell and a silicon heterojunction (SHJ) wafer bottom cell. The absorption and related current density are calculated using the rigorous simulations in the form of the finite element method for the nanostructured perovskite cell and a semi-empirical method for the SHJ cell. In order to reach the optimal value for the perovskite layer thickness we employ Newton’s method using derivatives obtained directly from the rigorous simulation. Using this we obtain an optimal layer thickness using typically one iteration step and eliminate the need for a parameter scan. We compare the results for different sinusoidal nanotextures applied to different layers in the multilayer thin-film perovskite top cell. The nanotextures lead to a gain in absorption and power conversion efficiency in comparison to an optimized planar reference. We also present experimental results towards a realisation of the proposed structure. These results give valuable insight for the emerging field of high efficiency perovskite/SHJ tandem solar cells.
Conference Presentation
© (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Phillip Manley, Klaus Jäger, Philipp Tockhorn, Sven Burger, Steve Albrecht, and Christiane Becker "Optimization of nanostructured high efficiency perovskite/c-Si tandem solar cells via numerical simulation (Conference Presentation)", Proc. SPIE 10731, Nanostructured Thin Films XI, 107310B (18 September 2018); https://doi.org/10.1117/12.2321240
Advertisement
Advertisement
KEYWORDS
Nanostructuring

Tandem solar cells

Numerical simulations

Perovskite

Absorption

Thin films

Nanostructured thin films

Back to Top