Presentation
23 May 2018 Tunable band gap biperiodic plasmonic crystals fabricated by laser interference lithography (Conference Presentation)
Author Affiliations +
Abstract
Plasmonic band gap is a range of frequencies, within which, surface plasmon polaritons cannot propagate for any wavevector. Unfortunately the first plasmonic band gap cannot be observed directly in reflectance spectroscopy [1]. To detect it, biharmonic metal-air surface structuring is conventionally utilized [2,3]. However in this case experimental geometry is strictly limited to normal angle of incidence, which is not compatible with large range of applications. In current work we introduce biperiodic plasmonic crystals. We experimentally demonstrate, that biperiodic structuring allows to tune band gap spectral-angular position. Laser interference lithography (LIL) is a well-established technique for creating periodic planar nanostructures over a large surface area. LIL allows to precisely control the modulation period and depth and thus perfectly match diffraction coupling conditions and tune plasmonic band gap properties. We used LIL experimental setup based on Lloyd interferometer. The radiation from the laser source (He-Cd, wavelength 325 nm, average power 14 mW) was spatially filtered and then formed interference pattern on the silicon wafer, covered with a thin layer of SU-8 2015. The structure period was defined by the incident angle on the interferometer. Modulation depth was defined by exposure time. By applying subsequent second exposure with another angle of incidence, we obtained biperiodic structure. Exposed samples were washed in corresponding developer, dried in air and later sputtered with 100 nm of aluminium. We fabricated a set of biperiodic plasmonic crystals with different periods and modulation depths. The quality and geometrical parameters of biperiodic plasmonic crystals were monitored by scanning electron microscopy and atomic force microscopy. The appearance of plasmonic band gap was measured by spectral-angular polarisation spectroscopy. We experimentally determined the dependance of plasmonic band gap properties (width and position) on geometrical parameters of biperiodic plasmonic crystals. We also performed FDTD numerical simulations (Lumerical). The experimental results are in good agreement with numerical calculations. [1] Raether, Heinz. [Surface Plasmons on Smooth and Rough Surfaces and on Gratings.], Springer Berlin Heidelberg, 91-105 (1988). [2] Barnes, William L., et al. "Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings." Physical Review B 54.9 (1996): 6227. [3] Kocabas, Askin, S. Seckin Senlik, and Atilla Aydinli. "Plasmonic band gap cavities on biharmonic gratings." Physical Review B 77.19 (2008): 195130.
Conference Presentation
© (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Igor S. Balashov, Alexander A. Chezhegov, Andrey A. Grunin, Artem V. Chetvertukhin, and Andrey A. Fedyanin "Tunable band gap biperiodic plasmonic crystals fabricated by laser interference lithography (Conference Presentation)", Proc. SPIE 10672, Nanophotonics VII, 106721F (23 May 2018); https://doi.org/10.1117/12.2307579
Advertisement
Advertisement
KEYWORDS
Plasmonics

Crystals

Laser crystals

Lithography

Tunable lasers

Modulation

Interferometers

Back to Top