Terahertz (THz) spectroscopy is a nondestructive method that has the ability to identify many hazardous materials by investigating their low frequency vibrational modes (0.1-6.0 THz). Ammonium nitrate (AN), often used in improvised explosives, exhibits featureless reflection/transmission spectrum at THz frequencies at room temperature. However, the low frequency vibrational modes exhibit strong temperature dependence below room temperature (<240k) due to the polymorphic phase transitions. In this work, we study the effective dielectric properties of AN embedded in a polytetrafluoroethylene (PTFE) host medium using terahertz time domain spectroscopy in the temperature ranging from 5K to 300K. The dielectric properties of pure AN were extracted using three different effective medium theories (EMT): (i) the simple effective medium approach, (ii) the Maxwell-Garnett (MG) model, and (iii) the Bruggeman (BR) model. The dielectric properties obtained from theoretical approximations agree well with the experimental values. We identified six lattice vibrational modes between 0.2-3.0 THz that are associated with the polymorphic phase transitions at low temperature.
|