Presentation
14 March 2018 Temperature stable electro-optic polymer modulators using high Tg polymer matrix (Conference Presentation)
Author Affiliations +
Abstract
In this work, we synthesized temperature stable electro-optic (EO) polymers by post-functionalization technique. The EO polymer consists of high molecular hyperpolarizability chromophores and PMMA-based polymer with a high glass transition temperature. We attached chromophores to the high Tg polymers with controlling the loading concentrations. We found that the use of adamantly methacrylate enhanced the thermal resistance of the EO activity at elevated temperatures. We characterized synthesized EO polymers by using the size exclusion chromatography, UV-vis spectroscopy, and Tg analyzers. The thermal and temporal stability of the EO polymers were tested in the Mach-Zehnder interferometer waveguide modulators. The fabrication was based on our previous technique, resulting the measured Vp of around 2-4 V. The r33 of the waveguide corresponds to 60-80 pm/V at the wavelength of 1550 nm. We found the excellent thermal stability of the EO polymer modulator, showing little degradation of the EO activity under high temperature test at 105C for longer than 2000 hours. The results are attributed to the high Tg property of the synthesized EO polymers.
Conference Presentation
© (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Hiroki Miura and Shiyoshi yokoyama "Temperature stable electro-optic polymer modulators using high Tg polymer matrix (Conference Presentation)", Proc. SPIE 10529, Organic Photonic Materials and Devices XX, 105290N (14 March 2018); https://doi.org/10.1117/12.2291287
Advertisement
Advertisement
KEYWORDS
Polymers

Electro optic polymers

Modulators

Polymer multimode waveguides

Waveguides

Chromophores

Mach-Zehnder interferometers

Back to Top