Objective: DOCI is a novel imaging modality with the ability to detect variations in endogenous fluorophore lifetimes by illuminating tissue with pulsed ultraviolet (UV) light. We have previously shown that DOCI is capable of delineating tumor margins. Tissue macro-/micro-environments, however, vary with organ site and histology. We therefore sought to better characterize DOCI signal analysis within the varying subsites of the oral cavity in this ex-vivo animal model.
Design: Fresh ex-vivo oral cavity specimens (n=66) from three New Zealand white rabbits were harvested for pulsed UV illumination utilizing a 6-diode in-series DOCI system. Photons produced were detected and fluorophore lifetimes calculated over a specified, homogenous, region of interest. Specimen site, size, histology, and relative average DOCI values analyzed.
Results: 66 specimens produced over 2 million data points for fluorophore lifetime analysis. The oral tongue muscle, dentition, and mucosa from the dorsal tongue, floor of mouth, and hard palate all produced unique DOCI relative average values. Each subsite was found to be uniquely different from one another and produced statistically significant differences in DOCI value (p<0.05).
Conclusions: DOCI has the ability to distinguish subtle differences in oral cavity subsites following fresh ex vivo harvest. The fluorophore lifetime relative average values of each tissue is uniquely different posing a novel strategy for intra operative oncologic imaging, surveillance, and possibly aid in the workup of pre-cancerous lesions. Growing a repository of normal tissue subsites is crucial for integrating an automated real-time deep learning algorithm for rapid tissue analysis.
|