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Abstract

Significance: Diffuse correlation spectroscopy (DCS) measures cerebral blood flow non-
invasively. Variations in blood flow can be used to detect neuronal activities, but its peak has
a latency of a few seconds, which is slow for real-time monitoring. Neuronal cells also deform
during activation, which, in principle, can be utilized to detect neuronal activity on fast time-
scales (within 100 ms) using DCS.

Aims: We aim to characterize DCS signal variation quantified as the change of the decay time
of the speckle intensity autocorrelation function during neuronal activation on both fast (within
100 ms) and slow (100 ms to seconds) timescales.

Approach: We extensively modeled the variations in the DCS signal that are expected to arise
from neuronal activation using Monte Carlo simulations, including the impacts of neuronal cell
motion, vessel wall dilation, and blood flow changes.

Results: We found that neuronal cell motion induces a DCS signal variation of ∼10−5. We also
estimated the contrast and number of channels required to detect hemodynamic signals at differ-
ent time delays.

Conclusions: From this extensive analysis, we do not expect to detect neuronal cell motion using
DCS in the near future based on current technology trends. However, multi-channel DCS will
be able to detect hemodynamic response with sub-second latency, which is interesting for brain–
computer interfaces.
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1 Introduction

Diffuse correlation spectroscopy (DCS) is an optical imaging method that measures blood flow
non-invasively and continuously. It quantifies a blood flow index by measuring the temporal
autocorrelation function of the speckle intensity fluctuations of diffusive light remitted from
tissue.1–4 A change in tissue dynamics results in a change of the decay time of the temporal
autocorrelation function. Thus, DCS can be utilized to detect tissue dynamics arising from neu-
ronal activities. The variation of the decay time is often only attributed to a change in cerebral
blood flow (CBF).5,6 The peak of the CBF often occurs at a time delay of a few seconds with
respect to the onset of neuronal activation, which is slow and not feasible for real-time mon-
itoring of brain activation in applications such as brain–computer interfaces.
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Other mechanisms that cause tissue dynamics due to neuronal activation can also contribute
to a change in the DCS signal. Studies have demonstrated that the optical properties of brain
tissue vary due to neuronal activation.7,8 The neural mechanisms that may contribute to the opti-
cal signal change may be related to the firing of action potentials. During an action potential, ions
are exchanged through the membrane of the neuron. This may cause a change in the neuron
shape (e.g., swelling as ions enter the cell), and one hypothesis is that these changes contribute
to phase changes of light as it reflects or passes through the shifting cells.9–12 This fast optical
signal associated with brain activation has been measured in vivo,13–15 but negative results have
also been reported.15,16 Reported delay time of the cell dynamics with respect to the onset of
neuronal activation ranges from within 1 to 100 ms,12,15 and our recent in vivo mouse brain
measurements have demonstrated that most of the values of the delay time are within 100 ms,17

as illustrated in Fig. 1. Apart from changes to the neurons themselves, cells such as pericytes and
glial cells may also reshape to support neuronal activity. In addition to direct cellular signals,

Fig. 1 Illustration of neurovascular coupling and the onsets of neuronal activation, neuronal cell
dynamics, and vessel wall dynamics. Upon brain activation, the neuron generates an action poten-
tial (a) that leads to a deformation of the neuron cell body that potentially relates to the exchange of
ions through the cell membrane. (b) The onset of this neuronal cell dynamics occurs on the order of
100 ms timescale. Meanwhile, the neuron sends the signal mediated by astrocytes and pericytes
to trigger blood vessel wall dilation. (c) The blood vessel wall movement leads to hemodynamic
changes in the CBV and CBF. Such neurovascular coupling dynamics contribute to motions that,
in principle, could be picked up by the DCS signal.
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neurovascular coupling causes blood vessels to dilate during neuronal activation, which delivers
more oxygen to the excited region. This hemodynamic response causes a change in the phase
of light scattered from the vessels, as well as cerebral blood volume (CBV) and CBF variations.
The onset of hemodynamic changes has a typical delay time of 450 ms with respect to the onset
of neuronal activation,18 which is a slower timescale compared with fast cellular signals. All of
these mechanisms can result in changes in the DCS signal; as such, DCS can potentially provide
important measures of real-time neuronal activity non-invasively. A comprehensive analysis of
the DCS signal variation induced by neuronal activity will benefit the instrument development of
highly sensitive DCS systems to study brain function.

We extensively analyzed the DCS signal variation due to neuronal activation by taking
into account all of the above-mentioned mechanisms. Specifically, our model considers the
impact of neuronal cell movement, blood vessel wall dilation, and blood flow and volume
changes related to neuronal activities. We have found that the DCS signal change induced by
neuronal cell dynamics is beyond the sensitivity of currently available DCS systems. However,
sub-second detection of neuronal activation utilizing the early behavior of hemodynamics-
induced DCS signal variations is technological feasible with SPAD cameras currently under
development.19 This analysis of the mechanisms that underlie the DCS signal variation is important
to the development of highly sensitive DCS systems for various applications, including studies
of brain functions, monitoring of brain states at the bedside, and brain–computer interfaces.

2 Methods

In this section, we describe the use of Monte Carlo simulations to calculate the DCS signal
variations induced by neuronal cell dynamics and hemodynamics. Other mechanisms that could
contribute to DCS signal changes are also discussed. The calculation of the noise is also presented to
obtain the contrast-to-noise ratio (CNR) to quantify the performance of a particular measurement.

2.1 Monte Carlo Simulations and the Calculation of DCS Signals

We used Monte Carlo simulations to model photon migration through a semi-infinite 3D
dynamic scattering medium. The Monte Carlo code is a derivation of that utilized in previous
publications.20–24 In the simulation, a total number of 108 photons were launched on the sample
surface and normal to it in the z direction, as illustrated in Fig. 2(a).
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Fig. 2 (a) Illustration of the Monte Carlo simulations. For a photon that reaches the detector, the
pathlength Ln and the accumulated dimensionless momentum transfer Yn were recorded. A local
region (shaded with orange color) is specified at z ¼ 15 mm, x ¼ 15 mm with respect to the
position of the source, with size in x and y of 10 mm and size in z = of 4 mm. A detected photon’s
total momentum transfer Yn2 and pathlength Ln2 within this local region are also recorded. (b) The
representative baseline DCS signal obtained from Monte Carlo simulations as compared with
the prediction of diffusion theory obtained from Eq. (4). Here the source–detector separation
ρ ¼ 30 mm, detector radius r ¼ 2 mm, μ 0

s ¼ 1 mm−1 μa ¼ 0.01 mm−1, αD ¼ 10−6 mm2∕s, and
λ ¼ 800 nm.
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The remitted photons were collected at a detector placed ρ ¼ 30 mm away from the source
and with a radius of r ¼ 2 mm. The reduced scattering coefficient of the medium was set to
μ 0
s ¼ 1 mm−1. A non-zero μa ¼ 0.01 mm−1 value was incorporated when calculating the tem-

poral field autocorrelation function g1ðτÞ ¼ hE�ðtÞEðtþ τÞi∕hjEðtÞj2i as shown below, where τ
is the correlation time and EðtÞ is the measured electric field at the detector. For the n’th photon
arriving at the detector, we recorded its total pathlength Ln and the accumulated dimensionless
momentum transfer Yn. The momentum transfer is the change of the wavevector during a single

scattering event ~q ¼ ~kout − ~kin, where ~kin and ~kout are the incident and scattered wavevectors,

respectively. Here, we considered only elastic scattering, thus j~kinj ¼ j~koutj ¼ k0. The accumu-
lated dimensionless momentum transfer of a detected photon is the normalized sum of the square
of the momentum transfer of all of the scattering events Yn ¼

P
sq

2
s∕2k20, where s denotes the

s’th scattering event of the n’th photon. With Yn and Ln obtained from the Monte Carlo sim-
ulations, the temporal field autocorrelation function js calculated as

EQ-TARGET;temp:intralink-;e001;116;571g1ðτÞ ¼
C
Np

XNp

n¼1

exp

�
−
1

3
αYnk20hΔr2ðτÞi

�
expð−μaLnÞ; (1)

where C is a normalization factor such that g1ð0Þ ¼ 1, Np is the total number of the detected
photons, and α is the probability that a scattering event happens at a particular type of scatterer of
interest, such as RBCs or neurons. The motion of the scatterers was assumed to be uncorrelated.
The functional form of the mean square displacement hΔr2i depends on the nature of the dynam-
ics of the scattering particles. For scatterers exhibiting ballistic motion, hΔr2ðτÞi ¼ v2τ2, where
v is the speed of the particles, whereas for diffusive motion hΔr2ðτÞi ¼ 6Dτ, where D is the
diffusion coefficient. The motion of the RBCs is a combination of ballistic flow and shear-
induced diffusion.25 It has been experimentally observed and numerically demonstrated that
DCS signals are dominated by the diffusive behavior of RBCs.21,25–27 Thus, we only modeled
the contribution from the diffusive behavior of the moving RBCs in this paper. As described later
in Secs. 2.2 and 2.3, the dynamics of the neuronal cell motion and vessel wall dilation are mod-
eled as ballistic motions, for we have not seen existing literature that suggests random diffusive
behavior of these movements. The baseline DCS signal in the absence of neuronal activation is
expressed as

EQ-TARGET;temp:intralink-;e002;116;349g1ðτÞ ¼
C
Np

XNp

n¼1

expð−2αYnk20DτÞ expð−μaLnÞ: (2)

Here, we used αD ¼ 10−6 mm2∕s, which provides a decay time of g2 close to experimental
observations,3 wavelength λ ¼ 800 nm, and k0 ¼ 2π∕λ. The representative baseline DCS signal
before neuronal activation that was applied is shown in Fig. 2(b). Experimentally, the intensity
temporal autocorrelation function g2ðτÞ ¼ hIðtÞIðtþ τÞi∕hjIðtÞji2 is measured instead of g1, and
g2ðτÞ is related to the theoretically modeled g1ðτÞ via the Siegert relation:28

EQ-TARGET;temp:intralink-;e003;116;237g2ðτÞ ¼ 1þ βg1ðτÞ2; (3)

with β ¼ 1 indicating complete coherence of the detected photons and β < 1 accounting for loss
of coherence and detection of multiple modes of the electromagnetic field.

The representative DCS signal computed with Monte Carlo simulations is compared with
analytical results obtained from the correlation diffusion equation for a semi-infinite medium:1,3

EQ-TARGET;temp:intralink-;e004;116;157g1ðρ; τÞ ¼
3Cμ 0

s

4π

�
expðKr1Þ

r1
−
expðKr2Þ

r2

�
: (4)

Here, K2 ¼ 3μaμ
0
s þ 6μ 02

s k20αDτ, r1 ¼ ðρ2 þ z20Þ1∕2, r2 ¼ ðρ2 þ ðz0 þ 2zbÞ2Þ1∕2, z0 ¼ 1∕μ 0
s, and

zb ¼ ð5∕3Þμ 0
s. The DCS signals obtained from the Monte Carlo simulation utilizing Eq. (2) and

from the theoretical prediction obtained using the correlation diffusion equation [Eq. (4)] are in
good agreement as shown in Fig. 2(b).
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Neuronal activation can occur in different regions of the brain. Here, we refer to the case of
neuronal activation being applied to the full simulation region as global activation. To account
for localized neuronal activity within a small region in our model, we specified a second tissue
type in the Monte Carlo simulation for a typical local neuronal activation measurement,29 with
the size in x − y of 10 mm and in z of 4 mm and being 15 mm away from the source in the x
direction and 15 mm beneath the sample surface as shown in Fig. 2(a) (orange color), which is
utilized to calculate the local neuronal activation that we refer to in this paper. The accumulated
dimensionless momentum transfer Yn2 and the total pathlength Ln2 within this local region were
also recorded to calculate the DCS signal change induced by neuronal activation only within this
local region. The autocorrelation function is then expressed as the contributions from these two
tissue types

EQ-TARGET;temp:intralink-;e005;116;604g1ðτÞ ¼
C
Np

XNp

n¼1

Y2
i¼1

expð−2αYnik20DτÞ expð−μaLniÞ; (5)

with i ¼ 1 and i ¼ 2 representing the scattering events and photon trajectories outside and within
this local region, respectively, and Ln ¼ Ln1 þ Ln2, Yn ¼ Yn1 þ Yn2.

To quantify the DCS signal variation, we need to identify a parameter that characterizes
the decay rate of the g1ðτÞ curves. Note that, since the medium is semi-infinite, g1ðτÞ is no
longer a single exponential decay function, as is the case for an infinite medium. The full
expression of Eq. (4) can be used to obtain a blood flow index D. However, a simpler function
used for fitting is highly preferred for real-time measurements. The exact solution in Eq. (4)
for Brownian motion is recast into g1ðτÞ ¼ expð−τ∕τcÞ when τ < τs,

30 where τs is defined

as τs ¼ τc
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3∕4Þμaμ 0

sðρ2 þ ðz0 þ zbÞ2Þ
p

. For the parameters that we are using, τs∕τc ¼ 2.6, and
τc ¼ 46 μs is estimated from fitting. We used the first 70 μs of the g1ðτÞ curve to fit the func-
tional form of g1ðτÞ ¼ expð−τ∕τcÞ, which ensures that τ < τs, to obtain the decay time τc.
Finally, we use the single parameter τc to characterize the dynamics of the brain tissue.

2.2 DCS Signal Change Induced by Neuronal Cell Dynamics

Some studies have demonstrated that action potential propagation induces phase changes of light
passing through or reflected from neuronal tissue, corresponding to a membrane displacement on
the order of a few nanometers,12,31–35 which normally happens within 100 ms with respect to the
onset of neuronal activation as illustrated in Fig. 1. This phase change is potentially caused by the
change of the cell size or the refractive index within the cell. For the purpose of modeling this
effect on the DCS signal, we only need to know the effective phase change per unit time, which
we discuss in terms of movement of the cell membrane only. We use the average speed of the cell
membrane movement of v ¼ 1 nm∕ms, which is consistent with the literature of ex vivo studies
of various types of cells12,31–35 and our recent in vivo measurements of the fast optical signals in
the mouse brain using optical coherence tomography.17 To account for the effect of this neuronal
cell motion on the DCS signal, we revised the total temporal field autocorrelation function as

EQ-TARGET;temp:intralink-;e006;116;237

g1ðτÞ ¼
C
Np

XNp

n¼1

g1n;bloodðτÞg1n;neuronalðτÞ expð−μaLnÞ;

g1n;bloodðτÞ ¼ exp

�
−
1

3
αYn;bloodk20 � 6Dτ

�
;

g1n;neuronalðτÞ ¼ exp

�
−
1

3
αneuronalYn;neuronalk20v

2τ2
�
: (6)

Here, C is the normalization factor such that g1ð0Þ ¼ 1, and g1n denotes the contribution from
a single photon. We considered the neuronal scattering probability αneuronal to be 1, which
provides the best-case scenario prediction and g1n;neuronalðτÞ ¼ expð− 1

3
Yn;neuronalk20v

2τ2Þ. In
reality, this probability can vary with brain regions where the densities of the neurons
differ.36–38 However, as discussed in Sec. 3, the induced DCS signal change for this best-case
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scenario is beyond the sensitivity of currently available DCS systems. Therefore, we do not
delve into the details of the variations of the neuronal cell densities in different brain regions in
this paper.

2.3 DCS Signal Change Induced by Vessel Wall Dynamics

In addition to neuronal cell movement, blood vessels also undergo dynamics due to neurovas-
cular coupling on a slow timescale, as illustrated in Fig. 1. The increase of vessel diameter
increases blood volume and decreases vascular resistance, thus resulting in an increase in blood
flow. Each of these effects impacts the DCS signal in the following three ways. First, with the
blood volume increase, the probability of scattering from the moving RBCs increases and thus α
in Eq. (2) increases. The baseline RBC scattering probability is set to be α ¼ 2%, which is sim-
ilar to the volume fraction of the vessels, and we let the scattering probability change in direct
proportion to the change in CBV during brain activation. Second, the blood flow speed increases,
which causes a proportional increase in the diffusion coefficient D in Eq. (2).21 Third, the vessel
wall movement results in a phase change of light scattered from the vessel wall. The average
speed of the vessel wall movement vvessel can be obtained from the time course of the vessel
diameter change as demonstrated below.

We incorporated the phase changes induced by vessel wall movement (the third effect) into
the formalism the same way as the phase changes induced by neuronal cell motion by replacing
g1n;neuronal with g1n;vesselðτÞ ¼ expð− 1

3
αYnk20v

2
vesselτ

2Þ in Eq. (6). We found that the magnitude of
this (third) effect is at least 5 orders of magnitude smaller compared with that of the blood volume
(first) and the flow speed changes (second), and the value of τc remains the same for the precision
used; thus it is ignored for the rest of the work presented here. We only consider the variation

in g1n;bloodðτÞ ¼ expð− 1
3
αYn;bloodk20 � 6DτÞ, and g1ðτÞ ¼ C

Np

PNp

n¼1 g1n;bloodðτÞ expð−μaLnÞ. To
obtain the changes of CBV and CBF, we utilized a single compartment vascular model that
considers the full vascular network to be one compartment to estimate the time courses of
rCBVðtÞ and rCBFðtÞ due to neuronal activation. The letter r denotes the relative value nor-
malized to the baseline value. For example, rCBFðtÞ ¼ CBFðtÞ∕CBFð0Þ. Here, t ¼ 0 denotes
the onset of vessel wall dilation. Note that there is a time delay between the onset of vessel
wall dilation and the onset of neuronal activation, which is estimated to be about 450 ms,39

whereas the time delay for neuronal cell dynamics is typically within 100 ms,17 as illustrated
in Fig. 1. Thus, when the hemodynamics-induced DCS signal change is considered, the
definition of the fast timescale is within 100 ms with respect to the onset of vessel wall
dilation or within 450 to 550 ms with respect to the onset of neuronal activation. The functional
form of the relative change of the vessel diameter d is given as an input to the model39 as
follows:

EQ-TARGET;temp:intralink-;e007;116;283rdðtÞ ¼ dðtÞ∕dð0Þ ¼ ð1þ t2Δd expð−t2∕σ2dÞÞ: (7)

The constant parameters are set to be Δd ¼ 0.07 and σd ¼ 1.83 s, following the recommended
values in Refs. 39 and 40. The time course of the rCBVðtÞ is related to rdðtÞ via rCBVðtÞ ¼
rdðtÞ2, due to the cylindrical geometry of the vessels and given that the total length of the vessel
is invariant. When the total pressure across the compartment is fixed, rCBFðtÞ ¼ rdðtÞ4 from
Poiseuille’s law. The illustration of the model and the time courses of rd, rCBV, and rCBF are
shown in Fig. 3. This is a simpler approximation of the blood flow dynamics following neuro-
nal activation as compared with the multi-compartment model40 more commonly used to model
fMRI41,42 and fNIRS18,43 measurements. Depending on the hemodynamics model used, the
peak value and time of the rCBFðtÞ and rCBVðtÞ can vary due to the extra parameter of the
delay time between the peak of CBV and CBF in the multi-compartment models. However,
for the early time behavior that does not depend on the delay time we are mostly interested in,
this simplified model is sufficient, and the magnitude of the results remain the same as com-
pared with using a more sophisticated model.

We explored the DCS signal change due to the variation of α and D within the measurement
time T when we start the measurement at time td after the onset of vessel wall dilation. Note
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that CBF is the volumetric flow that includes both the effects of the (1) volume and (2) flow
speed changes. For the effect of the variation of α and D within T, we consider that, when we
start the measurement at a time delay td, the dynamics can be characterized by a time varying
diffusion coefficient Dðtd; τÞ and scattering probability αðtd; τÞ with αðtd; τÞDðtd; τÞ ¼
αðtdÞDðtdÞð1þ RrCBFτÞ, where the rate of change is defined as RrCBF ¼ ΔrCBF∕T, T is the
measurement time window, and ΔrCBF is the change of rCBF within T. Strictly speaking, the

exact formalism for
D
Δr2ðτÞ

E
in Eq. (1) needs to be calculated from integration for a D value

that varies with time. Here, we used a linear approximation as above since the change is small,
which can be well described by the first-order term in the Taylor expansion. The product αD at
the time delay td is αðtdÞDðtdÞ ¼ αð0ÞDð0Þ � rCBFðtdÞ. The contribution from a single photon
is then g1n;bloodðτÞ ¼ expð− 1

3
αðtd; τÞYn;bloodk20 � 6Dðtd; τÞτÞ.

We see that the effect of the variation of D and α within the measurement time T to the DCS
signal change is a few orders of magnitude smaller compared with the effect of the delay time td
for the range of td values that we explored, i.e., td from 50 ms to 2 s. This range of td is chosen
since it provides a DCS signal variation that can be potentially detected using multi-channel
DCS systems currently under development. Thus, we have assumed that αðtd; τÞDðtd; τÞ ¼
αðtdÞDðtdÞ for a non-zero td value used in this paper, leading to g1n;bloodðτ; tdÞ ¼
expð− 1

3
αð0ÞYn;bloodk20 � 6Dð0Þ � rCBFðtdÞτÞ. Local vessel wall dynamics induced by local neu-

ronal activation were also considered, where the increasing values of α and D and the speed of
vessel wall dilation were only applied to the i ¼ 2 component in Eq. (5).
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Fig. 3 (a) Illustration of the single compartment model of vessel wall dilation process induced by
neuronal activation. The brain vasculature is represented as a single vessel with diameter d . The
total pressure drop across this vessel is fixed. The relative blood volume rCBV and flow rCBF are
related to the relative vessel diameter rd via rCBF ∝ rd4 and rCBV ∝ rd2. The time courses of
(b) relative vessel diameter rd , (c) rCBV, and (d) rCBF after neuronal activation obtained from the
single compartment model.
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2.4 Noise Model for DCS Measurements

To determine whether a DCS signal change can be detected experimentally, we compared the
DCS signal change induced by neuronal cell movement or hemodynamics with the noise level of
the measurement. The noise in g2ðτÞ for DCS has been analytically calculated.30 The standard
deviation of ðg2ðτÞ − 1ÞÞ, σðτÞ, at each correlation time τ is

EQ-TARGET;temp:intralink-;e008;116;668

σðτÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
Tb∕T

p �
β2

ð1þ e−2ΓTbÞð1þ e−2ΓτÞ þ 2mð1 − e−2ΓTbÞe−2Γτ
1 − e−2ΓTb

þ2hni−1βð1þ e−2ΓτÞ þ hni−2ð1þ βe−ΓτÞ
�
1∕2

: (8)

Here, Tb is the bin time, m is the bin index, T is the measurement time window, and
D
n
E
is the

average number of photons within bin time Tb. The analytical expression g2ðτÞ − 1 ¼ βe−2Γτ,
where Γ ¼ 1∕τc. To estimate the noise level in the experiments, we consider the parameters in

Eq. (8) to be Tb ¼ 1 μs, T ¼ 10 ms, β ¼ 1,
D
n
E
¼ 0.1, and τc ¼ 46 μs, which are obtained

from fitting the baseline g1 data shown in Fig. 2 using the expression e−τ∕τc . The resulting
σðτÞ is shown in Fig. 4. One way to reduce the noise level is to use multiple channels or multiple
instances for averaging. When Nc channels are used, the noise level is reduced to σNðτÞ ¼
σðτÞ∕ ffiffiffiffiffiffi

Nc
p

from the central limit theorem.
Comparison between the noise level and the neuronal activity-induced DCS signal variation

determines the CNR of a measurement. However, as discussed, instead of the change of g2ðτÞ,
which is a function of the correlation time τ, a single variable τc and its variation are used to
characterize the dynamics of the tissue. Thus, the relation between the theoretically calculated
σðτÞ and the noise-induced variation of τc, stdðτcÞ, is desired. To calculate stdðτcÞ, we numeri-
cally generated noisy g2ðτÞ curves by adding random fluctuations drawn from a Gaussian dis-
tribution with mean zero and standard deviation σðτÞ at each τ value. An example of the g2ðτÞ
curves before and after adding noise is shown in Fig. 5(a), using the parameters that give σðτÞ as
in Fig. 4. The distribution of the values of τc is obtained from the fitting of the noisy g2ðτÞ curves,
which provides the estimation of stdðτcÞ∕τc induced by noise, as shown in Fig. 5(b). For this
particular example stdðτcÞ∕τc ¼ 13 μs∕46 μs ¼ 0.28. Thus, this system can only resolve activ-
ities that induce a signal change of Δτc∕τc > 0.28. Increasing Nc reduces the noise level and
thus decreases stdðτcÞ. We define the CNR of the measurement as CNR ¼ Δτc∕stdðτcÞ ¼
C � SNR, where the relative contrast C ¼ Δτc∕τc and the signal-to-noise ratio, SNR ¼ τc∕
stdðτcÞ. To estimate the Nc required to achieve a CNR ∼1 for neuronal cell movement, vessel
wall dilation, and hemodynamics as discussed in Sec. 3, we need to obtain the relation between
stdðτcÞ and Nc. Using σNðτÞ to generate noisy g2ðτÞ curves, we calculate stdðτcÞ as a function of
Nc as shown in Fig. 6. We see that 1∕stdðτcÞ is proportional to

ffiffiffiffiffiffi
Nc

p
. Thus, CNR ¼ Δτc∕stdðτcÞ
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Fig. 4 The standard deviation of ðg2ðτÞ − 1Þ, σðτÞ as a function of correlation time τ obtained from
Eq. (8) with the parameters Tb ¼ 1 μs, T ¼ 10 ms, β ¼ 1, hni ¼ 0.1, and τc ¼ 46 μs.
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also increases linearly with
ffiffiffiffiffiffi
Nc

p
. This relation determines the requiredNc to detect an activation,

with CNR ¼ 1.

3 Results

In this section, we demonstrate the results of the DCS signal variations induced by neuronal cell
motion and hemodynamic changes arising from neuronal activations. We first show the DCS
signal change that arises on the slow timescale of a few seconds due to the hemodynamic
changes, which is what has been typically measured. As an example, we obtained g2ðτÞ at base-
line and at the peak of the rCBFðtÞ response shown in Fig. 3. The results of the induced DCS
signal change arising from global and local changes in blood flow are shown in Fig. 7. The decay
times τc obtained from fitting are indicated in the legends. The induced fractional change of τc,
i.e., Δτc∕τc, is 0.25 for global and 0.01 for local flow and volume changes. For a given meas-
urement time window T ¼ 10 ms, the number of instances/channels required for averaging is
Nc ¼ 2 and Nc ¼ 3805 for global and local activation, respectively, to achieve a CNR ¼ 1 for
the particular set of measurement parameters as used in the noise model in Fig. 4. This can
feasibly be detected in real time with the state-of-the-art SPAD cameras.19 We can also increase
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Tb ¼ 1 μs, T ¼ 10 ms, β ¼ 1, hni ¼ 0.1, and τc ¼ 46 μs.
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the measurement time T to improve CNR in measurements of the hemodynamics-induced DCS
signal changes.

On the fast timescale within 100 ms with respect to neuronal activation, the changes in the
DCS signal arise from neuronal cell motion. The results using the speed of the cell membrane
movement of 1 nm∕ms are shown in Fig. 8. The induced fractional change Δτc∕τc is on the
order of 10−5 for global and 10−7 for local activation. Note that we have assumed that the
best-case scenario is all of the scattering events globally or locally happening at a neuronal cell,
i.e., we assume α ¼ 1. In reality, α ≤ 1, so in reality the induced DCS signal change could be
smaller than what we predicted here. Unlike hemodynamics-induced changes that last for a few
seconds, the signal induced by neuronal cell motion only lasts for <100 ms.17 Thus, increasing
the measurement time is not feasible for the detection of neuronal cell motion in real-time mea-
surements. The number of instances/channels required for averaging to achieve CNR ∼1 is ∼109

and ∼1013 for global and local neuronal activation, respectively, for the particular set of meas-
urement parameters as used in the noise model in Fig. 4. This does not seem to be achievable in
the near future based on current detector technology trends.19

The DCS signal changes induced by fast scale hemodynamics for td ¼ 0 (450 ms with
respect to the onset of neuronal activation, see Sec. 2.3) were also obtained. Compared with
the results of slow signals shown in Fig. 7 in which the measurement took place at the peak
of the rCBFðtÞ curve, we now discuss the results if the measurement took place right after the
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Fig. 7 The DCS signal at baseline state g2baseline and activated state g2activation induced by
hemodynamics for a (a) global neuronal activation, where the variation of τc is Δτc∕τc ¼ 0.25,
and (b) local neuronal activation, where Δτc∕τc ¼ 0.01. Here, g2activation is obtained at time
t ¼ 1.8 s after activation, which corresponds to the peak of the rCBVðtÞ and rCBFðtÞ as shown
Fig. 3.
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onset of vessel dilation, i.e., with a measurement time window spanning between t ¼ 0 and
t ¼ T. Since the functional form of the rCBF increase with time is not linear, the average rate
of change RrCBF varies with measurement time T, as can be seen in Figs. 9(a) and 9(b) for a
global activation. The induced change of Δτc∕τc is on the order of 10−7 and 10−6 for T ¼ 10 ms

and T ¼ 100 ms, respectively, as shown in Figs. 9(c) and 9(d). The results of a local activation
are shown in Figs. 9(e) and 9(f), where Δτc∕τc is on the order of 10−8 and 10−7 for T ¼ 10 ms

and T ¼ 100 ms, respectively. Thus, the induced DCS signal change from fast hemodynamics
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Fig. 9 Hemodynamics-induced DCS signal variation for measurements starting at t ¼ 0 that
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a measurement time (a) T ¼ 10 ms and (b) T ¼ 100 ms. The baseline g1baseline and activated
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time T . We kept the same τ range as the previous figures for easier comparison.
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for td ¼ 0 is roughly 1 to 2 orders of magnitude smaller than the effect of neuronal cell on fast
timescales, and it cannot be detected by any foreseeable DCS system.

We also calculated the DCS signal variation on slow timescales induced by hemodynamics to
estimate the earliest time delay td with respect to vessel wall dilation that a neuronal activation is
measurable for a particular DCS system. As opposed to Fig. 7 where the DCS signal variation is
obtained at the peak of the hemodynamic changes, we obtain Δτc∕τc measured at different time
delays td with respect to the onset of the vessel wall dilation, i.e., with a measurement time
window spanning between t ¼ td and t ¼ td þ T, as shown in Fig. 10(a). For example, at a
time delay of 100 ms, Δτc∕τc reaches 10−2 to 10−3 for global activation and 10−3 to 10−4 for
local activation. We ignored the DCS signal change induced by changes of D and α within the
measurement T, which is at least 4 orders of magnitude smaller. We also estimated the number of
channels Nc required to reach CNR ∼1 as shown in Fig. 10(b) for the noise level in Fig. 4.

For the current technology that utilizes a kilopixel SPAD camera, for example, it is possible
to reach an SNR ¼ τc∕stdðτcÞ of the order of 300.19 To detect the hemodynamic signal, we need
Δτc∕τc > stdðτcÞ∕τc ¼ 1∕SNR. From Fig. 10(a), the earliest td that an activation can be detected
is at td ¼ 100 ms for global activation or td ¼ 700 ms for local activation. Adding the 450 ms,
which is the delay time of the onset of vessel wall dilation with respect to neuronal activation
(Fig. 1), the earliest time that a neuronal activation is detectable is 550 ms (global) and 1.15 s
(local) with respect to the onset of the activation. An even earlier detection of hemodynamic
signal can be potentially reached by adopting a megapixel SPAD camera for DCS detection
in the future.44

4 Discussion

We have extensively analyzed the mechanisms that contribute to DCS signals during neuronal
activation, including neuronal cell movement and vessel wall movement, though traditionally the
variation of the DCS signal is often attributed only to the change of the blood flow, with the
diffusion coefficient calculated using Eq. (4). In addition to neurons, other cells such as pericytes
and glial cells also reshape due to neuronal activity. Pericytes are contractile cells that act to
control the size of the capillaries.45,46 This effect was already incorporated in the hemodynamics
as described in Sec. 2.3 since the capillary size change is essentially covered by our modeling of
the vascular diameter changes. The glial cells also swell during neuronal activation. However, as
the literature suggests, the timescale of the glial cell motion due to the opening of aquaporins is
on the order of a few minutes.9,47–49 This is much slower compared with the effects of neuronal
cell motion in response to membrane potential or vessel wall dynamics. We therefore did not
model the contributions from pericytes and glial cells dynamics to the DCS signal.
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We also obtained the DCS signal variation on both fast and slow timescales. On the fast
timescale of 10 to 100 ms after neuronal activation, the largest DCS signal change Δτc∕τc
induced by neuronal cell motion is on the order of or smaller than 10−5. This is beyond the
sensitivity of any foreseeable DCS system based on current detector technologies due to the
large number of channels required to achieve a super high SNR.

A point worth mentioning is that Δτc∕τc is smaller than we had expected. As we can see in
Fig. 11, the decay time induced solely by neuronal cell motion is 38 ms, which gives a decay rate
10−3 that of the decay rate of the baseline DCS signal, but the overall induced Δτc∕τc is 10−5.
This is due to the difference in the functional forms of hΔr2ðτÞi in Eq. (1), which is hΔr2ðτÞi ¼
v2τ2 for the ballistic motion of neuronal cell motion and hΔr2ðτÞi ¼ 6Dτ for the diffusive behav-
ior of blood flow. We tested if imposing a diffusive behavior of the neuronal cell motion with
the same decay time as in Fig. 11 would induce Δτc∕τc ∼ 10−3 as expected. This indicates
that, if there exists diffusive-like motion associated with neuronal cell motion similar to that
of blood flow, the DCS signal change will be 2 to 3 orders of magnitude larger than what
was predicted in Fig. 8. To the best of our knowledge, diffusive-like motion has not been
reported for neuronal cell motion during activation. The reported time courses of the phase
change of light passing through the cells due to activation does not seem to suggest a diffusive
behavior.12

The change of the DCS signal arising from hemodynamic responses due to neurovascular
coupling is another mechanism that can be utilized to detect neuronal activation at a reasonably
short latency. We need to add another ∼450 ms to td in Fig. 10, if the time delay with respect to
the onset of the neuronal activation is of interest. This is a slower process compared with cellular
motion, but it provides an opportunity to detect sub-second neuronal activation in real time with
multi-channel DCS systems.

We analyzed DCS signal changes induced by global and local neuronal activation. The global
activation that we refer to here does not have to be an activation that occurs for the whole brain.
We define global activation for an activation region large enough to cover the span of most
photon trajectories for the particular source–detector separation. For the local activation, we
specified a particular small activation region and detection geometry. Apparently, the signal
change is different for various geometries, which we did not explore here. We expect the order
of magnitude to be similar to what is reported in this work. However, for further exploration, it is
straightforward to adjust the parameters in the Monte Carlo simulations to mimic a particular
experimental condition. The CNR analysis also depends on the parameters used in the noise
model, which can be adjusted accordingly.

We utilized the decay time τc as a single parameter to characterize brain dynamics in real
time. One limitation for this technique is that it requires the single-photon detector to have high
time resolution that is capable of resolving the decay time. In addition to τc, other parameters
such as β, μs, and μa

40 in Eq. (4) and the spatial contrast as measured in laser speckle contrast
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imaging50 may also be utilized to detect neuronal activation. We will compare the performance
of using DCS to detect brain activities with other techniques in the future.

In summary, we have extensively analyzed the components of the DCS signal variation dur-
ing neuronal activation using Monte Carlo simulations. This study has enhanced our fundamen-
tal understanding of the underlying mechanisms of brain tissue dynamics that contribute to the
DCS signal variations. Our results also provide guidance for the instrument development of DCS
systems to detect brain activation with a given latency, which may be relevant for applications
such as understanding brain functions, therapeutic monitoring of blood flow, and non-invasive
brain–computer interfaces.
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