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ABSTRACT. Significance: Extracting optical properties of tissue [e.g., the attenuation coefficient
(μ) and the backscattering fraction] from the optical coherence tomography (OCT)
images is a valuable tool for parametric imaging and related diagnostic applications.
Previous attenuation estimation models depend on the assumption of the uniformity
of the backscattering fraction (R) within layers or whole samples, which does not
accurately represent real-world conditions.

Aim: Our aim is to develop a robust and accurate model that calculates depth-wise
values of attenuation and backscattering fractions simultaneously from OCT signals.
Furthermore, we aim to develop an attenuation compensation model for OCT
images that utilizes the optical properties we obtained to improve the visual repre-
sentation of tissues.

Approach: Using the stationary iteration method under suitable constraint condi-
tions, we derived the approximated solutions of μ and R on a single scattering
model. During the iteration, the estimated value of μ can be rectified by introducing
the large variations of R, whereas the small ones were automatically ignored. Based
on the calculation of the structure information, the OCT intensity with attenuation
compensation was deduced and compared with the original OCT profiles.

Results: The preliminary validation was performed in the OCT A-line simulation and
Monte Carlo modeling, and the subsequent experiment was conducted on multi-
layer silicone-dye-TiO2 phantoms and ex vivo cow eyes. Our method achieved
robust and precise estimation of μ and R for both simulated and experimental data.
Moreover, corresponding OCT images with attenuation compensation provided an
improved resolution over the entire imaging range.

Conclusions: Our proposed method was able to correct the estimation bias
induced by the variations ofR and provided accurate depth-resolved measurements
of both μ and R simultaneously. The method does not require prior knowledge of the
morphological information of tissue and represents more real-life tissues. Thus, it
has the potential to help OCT imaging based disease diagnosis of complex and
multi-layer biological tissue.
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1 Introduction
Optical coherence tomography (OCT)1 can acquire high resolution cross-sectional images of
biological samples by measuring their backscattered signals and has become a widely used tool
for microstructure analysis,2 disease diagnosis, and biomedical imaging.3,4 However, OCT image
contrast comes from the small range of in-sample refractive index variations, around 1.3 to 1.5,5

and this makes accurate real-time assessment of biological tissue challenging. To obtain accurate
tissue anatomical structure information, there has been a growing interest in OCT attenuation
coefficient imaging,5,6 which measures the light decay associated with the absorption and scat-
tering. Following Lambert–Beer’s law, the irradiance L exhibits an exponential decay along the
penetrating depth z, which can be written as

EQ-TARGET;temp:intralink-;e001;114;611LðzÞ ¼ Lð0Þe−2
R

z

0
μðuÞdu; (1)

where Lð0Þ is the initial irradiance value, μ is the attenuation coefficient. With a low Lð0Þ, a large
z or μ, or a combination of these factors, the decayed irradiance LðzÞ could be low, significantly
limiting the visibility in deeper layers.7,8 Many OCT attenuation coefficient models have been
developed to correct this attenuation loss and increase potential contrast for different tissue char-
acterization, such as assessing the skin wound healing,9 atherosclerotic plaques,10,11 and filtering
blebs after trabeculectomy.12 To quantify the attenuation of tissue, one straightforward approach
is to assume a homogeneous sample and fit the OCT A-scan signals with exponential decay
functions.7,13 Due to the noise reduction and pre-averaging step, the attenuation coefficient is
not depth-resolved, resulting in a loss of details of the inner structures of samples.

Inspired by ultrasonic imaging techniques,14 a depth-dependent model was proposed to mea-
sure local attenuation properties.15,16 It bypasses the fitting step and noticeably outperforms in
turbid samples with strong axial variations in light scattering. Later, several methods have been
designed to improve upon this method by point spread function (PSF)17,18 as a practical light
source and taking the noise floor into account.19 Another type of improved algorithms have been
developed to mitigate the distal end errors,20,21 which is caused by the Vermeer’s model hypoth-
esis (Lð∞Þ ¼ 0). However, all these computational approaches assumed a constant backscatter-
ing of the attenuated light, denoted as the backscattered fraction RðzÞ. In theory, RðzÞ depends
strongly on the particle size, relative refractive index,22 and the numerical aperture (NA) of the
OCT system.23 Previous studies proved that there is a significant difference in the backscattered
fraction measured from intravascular OCT images.24 Therefore, the assumption of fixed RðzÞ can
result in considerable under- or overestimation of tissue attenuation. More recently, Cannon
et al.22 proposed an improved model that can measure the depth-resolved attenuation coefficients
and the layer-resolved backscattering fractions simultaneously, and thus able to reduce measure-
ment errors for heterogeneous samples. However, this method requires pre-segmentation of each
layer, and an inaccurate segmentation could seriously affect the subsequent attenuation estima-
tion. Furthermore, it is still challenging to precisely measure μðzÞ for a complex tissue containing
fuzzy boundaries and noise.

In this study, we make a systematical analysis of over- and underestimation of attenuation
coefficients μðzÞ due to the assumption of a constant backscattering fraction and present an alter-
native and practical depth-dependent attenuation characterization method without requiring a
pre-segmentation step. As shown in Eq. (1), the decay rate of irradiance LðzÞ relies on μðzÞ,
whereas the acquired OCT intensity is determined by the product of all three variables, μðzÞ,
RðzÞ, and LðzÞ. To decouple their contributions, an underdetermined equation set with initial
conditions was deduced. Approximated μ and R were then solved by iterations and updated
simultaneously. Several constraint conditions were introduced to control the iteration process
in practice. The stability and convergency of the equation set is discussed in the later section.
Based on the estimated optical properties of samples, a model for correcting the light attenuation
loss is also demonstrated. Our method is first verified using numerically simulated OCTA-scan
signals and Monte Carlo simulated numerical phantom models. Further validations are per-
formed using multi-layer silicone-dye-TiO2 phantoms and bovine retina imaged with our in-
house built SS-OCT (sweep-source OCT). Compared with raw OCT images of the retinal tissue,
our attenuation-corrected OCT profiles are more accurate assessing the retinal microvasculature.
We believe that such an accurate tissue characterization of μ and R and the attenuation
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compensation model can be a highly effective diagnostic tool for analyzing complex and hetero-
geneous biological samples.

2 Method

2.1 Theory

2.1.1 Iteration-based computation of μ and R

As shown in Eq. (1), the irradiance value L (W∕mm2) decreases when the light propagates
through a medium with the loss. In our SS-OCT system, the acquired digital signal intensity
IðzÞ detected at the depth z is a portion of the irradiance value, given as15

EQ-TARGET;temp:intralink-;e002;117;604IðzÞ ¼ −βRðzÞ dLðzÞ
dz

¼ 2βRðzÞμðzÞLðzÞ; (2)

where β is a converting factor related to the detection quantum efficiency and digitization
process.23 Note that the axial PSF calibration, sensitivity roll-off, and noise floor related to
IðzÞ in our SS-OCT system are discussed later in Sec. 2.3. The factor 2 is due to the round trip
between the detector and the sample. According to the scattering theory, the attenuation coef-
ficient μ is determined by the scattering coefficient μs and absorption coefficient μa. μa is neg-
ligible compared to μs in the near-infrared region.25 μs depends on the geometric size of the
scattering particle, their volume density, the incident wavelength, and refractive indices.26 On
the contrary, RðzÞ is not affected by the volume density and is only determined by the other
factors above. For an ideal sphere case, it can be written as

EQ-TARGET;temp:intralink-;e003;117;461R ¼
2π

R
π
arcsinðNAÞ γðθÞ sin θdθ

2π
R
π
0 γðθÞ sin θdθ

; (3)

where θ is the angle between the incoming wave and backscattered wave (θ > 90 deg), and γðθÞ
is the volume scattering function, indicating the differential scattering cross section of particles
per unit volume.23,27 The backscattering fraction RðzÞ is the ratio of the integral of γðθÞ over the
acceptance angles determined by NA to the integral of γðθÞ over full solid angle. Another relevant
parameter is the scattering anisotropy, defined as the average cosine of the scattering angle

EQ-TARGET;temp:intralink-;e004;117;360g ¼ 2π
R
π
0 γðθÞ sin θ cos θdθ

2π
R
π
0 γðθÞ sin θdθ

: (4)

In the following section, we do not discuss the calculation of g. It is only used for analyzing the
scattering behaviors of samples and building a numerical phantom using the Monte Carlo
simulation.

Here, we assume the sample surface is at depth 0 and the light decays to zero at infinity. The
penetration depth is also unlimited. Similar to Eq. (2), the initial value of the signal intensity IðzÞ
can be written as

EQ-TARGET;temp:intralink-;e005;117;250Ið0Þ ¼ 2βRð0Þμð0ÞLð0Þ: (5)

Next, we continue the work by Vermeer’s method15 and introduce an integral term of IðzÞ from
Eq. (2):

EQ-TARGET;temp:intralink-;e006;117;203

Z
∞

z
IðuÞdu ¼ −β

Z
∞

z
RðuÞ dLðuÞ

du
du ¼ βRðzÞLðzÞ þ β

Z
∞

z

dRðuÞ
du

LðuÞdu: (6)

Equation (6) is deduced by the integration by parts. Following Ref. 15, we divide Eq. (2) by
Eq. (6) and substitute LðzÞ by Eq. (1), we obtain

EQ-TARGET;temp:intralink-;e007;117;142

IðzÞ
2
R∞
z IðuÞdu ¼ RðzÞμðzÞLðzÞ

RðzÞLðzÞ þ R
∞
z

dRðuÞ
du LðuÞdu

: (7)

To better separate μðzÞ from other variables, we move them to left-hand side (LHS), shown as

Wang, Wei, and Kang: Depth-dependent attenuation and backscattering. . .

Journal of Biomedical Optics 085002-3 August 2023 • Vol. 28(8)



EQ-TARGET;temp:intralink-;e008;114;736 μðzÞ ¼ IðzÞ
2
R
∞
z IðuÞdu ×

�
1þ

R∞
z

dRðuÞ
du LðuÞdu

RðzÞLðzÞ
�
; (8)

EQ-TARGET;temp:intralink-;e009;114;689¼ IðzÞ
2
R∞
z IðuÞdu ×

�
1þ

R∞
z

dRðuÞ
du e−2

R
u

0
μðvÞdv

du

RðzÞe−2
R

z

0
μðvÞdv

�
: (9)

If the backscattering fraction is assumed constant, the derivatives of RðzÞ will be zero and Eq. (9)
will degenerate to the basic attenuation coefficient estimation model,15 given as

EQ-TARGET;temp:intralink-;e010;114;636μðzÞ ¼ IðzÞ
2
R
∞
z IðuÞdu : (10)

For multi-layer samples with varying backscattering fractions, using the simplified model in
Eq. (10) can lead to both under- and overestimation of μðzÞ over the entire imaging range.
Both RðzÞ, μðzÞ, and the derivative of RðzÞ can affect this type of measurement errors.
To calculate the backscattering fraction RðzÞ, we unitize the model introduced by Liu et al.24

It subdivides a heterogeneous sample into portions small enough to be homogeneous at any
depth, e.g., z ∈ ðz1; z2Þ, where μðzÞ ¼ μðz1Þ nd RðzÞ ¼ Rðz1Þ. Under this condition, Eq. (2) can
be modified as

EQ-TARGET;temp:intralink-;e011;114;514IðzÞ ≈ 2βRðz1Þμðz1ÞLðz1Þe−2ðz−z1Þμðz1Þ; (11)

where IðzÞ at depth z ∈ ðz1; z2Þ. e−2ðz−z1Þμðz1Þ is treated as 1 since its thickness is small. We take
the logarithm of Eq. (11) and plug Eq. (1) into it, and obtain

EQ-TARGET;temp:intralink-;e012;114;464In 2βL0 · Rðz1Þ ≈ In
IðzÞ
μðz1Þ

þ 2

Z
z1

0

μðuÞdu; (12)

where the logarithm of RðzÞ has a linear relationship both with the integral of μðzÞ and the log-
arithm of IðzÞ divided by μðzÞ. This assumption simplifies calculations and ensures an accurate
estimation of RðzÞ in a discrete form.

Equations (9) and (12) form a nonlinear integral equation set, which describes a strong
coupling between RðzÞ and μðzÞ and their contributions to the acquired OCT signal intensity,
given as

EQ-TARGET;temp:intralink-;e013;114;355

8>>><
>>>:

μðzÞ ¼ IðzÞ
2
R

∞
z

IðuÞdu ×
�
1þ

R
∞
z

dRðuÞ
du e

−2
R

u

0
μðvÞdv

du

RðzÞe−2
R

z

0
μðvÞdv

�

In 2βL0 · Rðz1Þ ≈ In
IðzÞ
μðz1Þ þ 2

R z1
0 μðuÞdu

: (13)

They are transcendental equations including exponents and logarithms and thus there are no
explicit general solutions. Moreover, the whole equation set is underdetermined since they are
both derived from Eq. (2). To address this, we adopted an extended form of a stationary iterative
method to obtain an approximated solution to this nonlinear system, where only a single
unknown variable μðzÞ is on the LHS in Eq. (13). It is defined as Richardson iteration,28

EQ-TARGET;temp:intralink-;e014;114;229μkþ1ðzÞ ¼ MμkðzÞ þ c; (14)

where k is the number of iterations, M is the iteration matrix, and c is a constant vector. Its key
idea is the successive approximation from μk to μkþ1, where μkþ1 only depends on μk but not the
previous values μ0;1;: : : ;k−1. The initial values μ0ðzÞ and R0ðzÞ are calculated by Eqs. (10) and
(12), respectively. The digitized irradiance value βLð0Þ is acquired at the beginning of experi-
ments, detailed in Sec. 2.3. Owing to the strong coupling in Eq. (13), several constraint con-
ditions are added to better approximate the ground truth fμgðzÞ; RgðzÞg. Without them, the
variables fμkðzÞ; RkðzÞg might remain unchanged after initialization, resulting in infinite but
similar loops (detailed in Sec. 2.1.2). As stated in Eq. (13), the recursion from μk to μkþ1 is

determined by the derivative of the backscattering fraction dRðzÞ
dz , and any level of changes in

RðzÞ at depth z can influence the iteration procedure ahead of it. As a result, RkðzÞ is fuzzily
processed and only large changes in RkðzÞ are retained. The rate of changes of Rk was measured
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by dRkðzÞ
dz . It is reasonable to ignore the small signal fluctuation, because it may come from mea-

suring errors, such as the system speckle noise, whereas the large variation is caused by the
sample structures. Through multiple tests, we confirmed that four to five times the average

derivative
˜dRkðzÞ
dz was normally an appropriate threshold for all the following simulations and

experiments to reduce the noise and preserve the signal edge. Each region with small variation
of Rk was substituted by its average value. Due to the strong coupling between μk and Rk, omit-
ting this fuzzy processing step or using a very small threshold can result in duplicated outputs in
each loop. On the contrary, if changes of Rk are not considered, our estimation equation will
degenerate to the basic attenuation estimation model in Eq. (10).

2.1.2 Convergence and constraint conditions

The convergence of our equation set is determined by its iteration matrix. In a linear system, for
all initial μ0, the convergent solution is proved to exist when the induced norm of iteration matrix
M satisfies that kMk < 1.28 In the Supplemental Material, we demonstrated that the induced
norm can be larger than 1 in certain cases. Therefore, there is no guarantee that a global con-
vergent solution will be obtained. However, local optimal values can be approximated given that
the initial value μ0ðzÞ by Vermeer’s model15 is usually close to ground truth value μgðzÞ, which
has the same order of magnitude. Here, we added practical constraints on the iteration process to
prevent unnatural distortions of μðzÞ and RðzÞ, given as

EQ-TARGET;temp:intralink-;e015a;117;485RðzÞ ∈ ð0;1Þ; (15a)

EQ-TARGET;temp:intralink-;e015b;117;450RðzÞ ∈ ðA · R̃; B · R̃Þ; R̃ ¼
R
∞
0 IðzÞdz
βL0

; (15b)

EQ-TARGET;temp:intralink-;e015c;117;418

μkðzÞ
μ0ðzÞ

∈ ðC;DÞ; (15c)

EQ-TARGET;temp:intralink-;e015d;117;387k < E; (15d)

EQ-TARGET;temp:intralink-;e015e;117;369jμkþ1ðz0Þ − μkðz0Þj > 0.01 × μkðz0Þ; z0 ¼ max
z

jμkþ1ðzÞ − μkðzÞj: (15e)

fA; B; C;D; Eg are the scaling factors that can be adjusted according to an actual situation.
Equation (15a) is based on the range of RðzÞ, which is a unitless ratio between 0 and 1.
Equation (15b) describes the fluctuation of depth-dependent RðzÞ around its average value
R̃ðzÞ computed by Eq. (2). Equation (15c) prevents overcompensation of the attenuation
μðzÞ. As stated in Eqs. (15d) and (15e), the program will stop executing once it achieves a local
convergence or the loop is completed after a predetermined iteration value.

2.1.3 Attenuation compensation model

As shown in Eq. (2), the acquired signal intensity IðzÞ is badly affected by the decayed irradiance
LðzÞ, leading to the deeper region of thick specimens undetectable. On the contrary, the ideal
signal intensity IDðzÞwithout the influence of the attenuated irradiance of the layers above can be
assumed as

EQ-TARGET;temp:intralink-;e016;117;200IDðzÞ ¼ 2RðzÞμðzÞβLð0Þ; (16)

where the initial irradiance Lð0Þ takes place of the attenuated irradiance LðzÞ. With more accu-
rate μðzÞ and RðzÞ obtained by our model, we could achieve a better intensity compensation
IDðzÞ for the attenuation loss in OCT images. Previous studies9,29,30 took the attenuation map
μ as a representation of the compensated intensity map ID, where IDðzÞ is proportional to μðzÞ
with RðzÞ being a constant. This is not applicable to a multi-layer tissue with complex scattering
behaviors. Our model works better on heterogeneous samples by taking the backscattering frac-
tion into intensity compensation, which allows a more precise reconstruction of OCT signal
intensity.
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2.2 Manufacturing Process of Samples
To validate the performance of our method, two-layer silicone elastomer-based phantoms
were fabricated using a well-known protocol.31 First, viscous suspensions including TiO2 par-
ticles, a black dye (Higgins®), and a base elastomer (Sylgard® 284 Silicone Elastomer
MicroLubrol) along with a curing agent were well blended. Different backscattering properties
were obtained by changing the concentration of TiO2 particles and the dyes, which has a different
dependency on the light scattering and absorption.31 The mass concentration of TiO2 and a black
dye are set to 0.1 w%, 0.2 w%, 0.25 w%, 0.3 w%, and 0.5 w%, 0.75 w%, 1.5 w%, 2 w%,
respectively. The thickness of each cured mixture was around 300 to 600 μm. After curing, they
were imaged and stacked into different two-layer phantoms. The tissue study was conducted
using ex vivo healthy bovine retinas, which were dissected to obtain an open-sky view for
OCT imaging.

2.3 OCT System Setup and System Calibration
An in-house built SS-OCT system that operated at a 100 kHz sweep rate with a sweeping range
of 100 nm and a center wavelength of 1060 nm was used for all experiments. The axial resolution
was ∼6 μm in air and ∼4.5 μm in biological samples, whereas the lateral resolution was
∼12.9 μm. The NA of our OCT system is 0.05. Taking axial PSF and the sensitivity roll-off
into account, the OCT signal intensity defined in Eq. (2) is modified as

EQ-TARGET;temp:intralink-;e017;114;508IrawðzÞ ∝ β · Hðz − zf; zRÞ · TðzÞ · RðzÞμðzÞLðzÞ; (17)

where TðzÞ and Hðz − zf; zRÞ denote the sensitivity roll-off and the axial PSF, respectively. zf is
the depth of focus related to the sample surface. Benefited from the long coherence length of our
system, ∼12 mm, the effect of the sensitivity roll-off is negligible within the sample imaging
depth of ∼3 mm. Moreover, Hðz − zf; zRÞ is expressed as32

EQ-TARGET;temp:intralink-;e018;114;435Hðz − zf; zRÞ ¼
��

z − zf
zR

�
2

þ 1

�
−1
: (18)

Here, zR denotes the Rayleigh length of the incident Gaussian beam. A highly reflective sample
was imaged twice at different depths,33 whose signal intensities were denoted as image1 and
image2. The difference of the surface depth in these two images was measured as Δz.
According to Eq. (17), the normalized signal intensity IrawðzÞ∕Hðz − zf; zRÞ of image1 should
be equal to the normalized signal intensity of image2 at the depth zþ Δz. Therefore,
the values of zR and zf can be estimated by exhaustive search to minimize the following
equation:

EQ-TARGET;temp:intralink-;e019;114;312fẑR; ẑfg ¼ arg min
zR;zf

kðIrawðzÞ∕Hðz − zf; zRÞÞimage1

−ðIrawðzþ ΔzÞ∕Hðzþ Δz − zf; zRÞÞimage2k1: (19)

The L1 norm of all 1024 A-scans in the B-scan was computed to reduce errors and exclude
outliers. The background noise is removed by subtracting the background signals obtained with-
out the sample. The term βLð0Þ is acquired by the global integration of OCT signals (unit is
A.U.) from a strong reflector, calculated as 20,068 A.U. × mm.

2.4 Signal Processing
Our approach is based on the iterative calculation and all the real-time OCT data were saved for
offline processing using Matlab. The first step is to remove the axial PSF Hðz − zfÞ from the
acquired signal intensity IrawðzÞ. The averaging is used to remove the speckle noise and increase
SNR with a temporal window size of 5 B-mode images. Then, the signal intensity of the noise
floor is identified and replaced by a fitting signal, for example, as shown in Fig. 1(a). The inten-
sity of the noise floor at depth znf1 is defined as 50 dB. The average attenuation coefficient μ̃
near the distal end is obtained by fitting the signal intensity at the depth z ∈ ðznf0; znf1Þ, which
is given as

EQ-TARGET;temp:intralink-;e020;114;90IðzÞ ∝ μ̃e−2μ̃z; z ∈ ðznf0; znf1Þ; (20)

Wang, Wei, and Kang: Depth-dependent attenuation and backscattering. . .

Journal of Biomedical Optics 085002-6 August 2023 • Vol. 28(8)



where the intensity at the starting point znf0 is defined as 58 dB. The intensity of the noise floor
IðzÞ deeper than z ¼ znf1 is extrapolated to infinity from Eq. (20). The curve fitting and extrapo-
lation can reduce the effect of the noise floor; otherwise it can cause the underestimation of μ19

when using Eq. (10), as shown in blue in Fig. 1(b). Moreover, the basic assumption of Eq. (10) is
satisfied since the predictive signal intensity travels deep enough that the irradiance light decays
away completely at that penetration depth.15 Because of neglecting the varying R, the measure-
ment of μ0 based on Eq. (10) deviates from the ideal value. Next, initial values fμ0ðzÞ; R0ðzÞg are
computed using Eqs. (10) and (12), whereas the average backscattering fraction R̃ðzÞ of the
sample is computed (detailed in Sec. 2.1.2). Once the program is executed, the stationary iter-
ation method is utilized to resolve a transcendental equation set Eq. (13), by a successive approxi-
mation of fμkðzÞ; RkðzÞg. To decouple the equation set, the backscattering fraction RkðzÞ is
blurred in each loop. Only larger changes of RkðzÞ at a specified threshold level are taken into
account to rectify the measurement error of μkðzÞ. The program stops automatically if one of the
criteria is not met. Finally, the optimized tissue profiles fμkðzÞ; RkðzÞg is used for calculating
OCT images with attenuation compensation ID based on Eq. (16). The detailed sequence
processing is shown in Algorithm 1.

Fig. 1 Example of locating and removing the noise floor by signal fitting extrapolation: (a) repre-
sentative OCT signal intensity and (b) measured attenuation coefficient μwith and without extrapo-
lation. The OCT signal intensity in red is extrapolated to infinity.

Algorithm 1 Tissue characterization by stationary iterative method

Input: conventional tomogram reconstruction I rawðzÞ, system parameters HðzÞ, βLð0Þ.

Output: estimated attenuation coefficient μk ðzÞ, backscattering fraction Rk ðzÞ after iteration, compensated
tomogram reconstruction IDðzÞ.

1: System calibration and averaging IðzÞ ¼ 1
N

PN
i¼1 ½I rawðzÞ · HðzÞ−1�j

2: Locate and remove the noise floor by signal fitting
extrapolation

/*detailed in Eq. (20)*/

3: Compute initial values fμ0ðzÞ; R0ðzÞg and average
backscattering term R̃

/*Calculation of μ0ðzÞ is based on Eq. (10)*/

R0ðzÞ ≈ exp
�
In IðzÞ

μðz1Þ þ 2∫ z1
0 μðuÞdu

�
· ð2βL0Þ−1;

/* Calculation of R̃ is based on Eq. (15b)*/

4: while constraints are true do /*Detailed in Eq. (15)*/

5: fμk ðzÞ; Rk ðzÞg → fμkþ1ðzÞ; Rkþ1ðzÞg /*Rk ðzÞ is fuzzily processed. Detailed in Eq. (13)*/

6: end

7: Compute attenuation compensated tomogram IDðzÞ /*Detailed in Eq. (16)*/
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2.5 Numerical Simulation

2.5.1 A-mode numerical imaging

A numerical simulation of the OCT depth profile was performed using a single scattering
model by defining μ and R. The calculation was based on Eq. (2), with a constant value
βLð0Þ ¼ 2.07E − 2ðA:U: × pixelÞ. Each digital phantom contained four layers and their bottom
layers were set to be infinitely long, where all the light decayed to zero. All phantoms were
placed at a depth of 125 μm, with an axial resolution of 1 μm. The A-line simulation depicted
an ideal situation that avoided the estimation bias of μ, which neglected many interference fac-
tors, including the multiple scattering effects, a limited imaging depth of the system, the speckle
noise, and the noise floor. The ground truth values μg of the region z ∈ ðz1; z2Þwere computed by
fitting IðzÞ with an exponential function in Eq. (20); the ground truth values Rg was computed by
Cannon’s layer-based model as

EQ-TARGET;temp:intralink-;e021;114;579RgðzÞ ¼
2
R
z2
z1
IðzÞdz

βLðz1Þð1 − e−2μgðz2−z1ÞÞ : z ∈ ðz1; z2Þ: (21)

Ground truth values are also computed in the same way in the subsequent experiments.

2.5.2 Monte Carlo simulation

The basic theory of Monte Carlo modeling for light transport (MCML) is well-described by
Jacques and Wang,34 and it is a powerful tool for analyzing laser–matter interactions, especially
for multi-layer materials. Here, we chose the Monte Carlo approach to simulate the light propa-
gation through a complex layered retinal model and applied our method for tissue characteri-
zation. The retinal model has a complex layered structure,35 and it is a suitable model to evaluate
and compare different attenuation characterization models. The overall geometrical retinal model
is shown in Table 1. The 13-layer geometry was based on the common four-layer retinal model
containing retina, retinal pigment epithelium (RPE), choroid with 70% blood, and sclera.36,37 To
subdivide the neural retina into 10 layers, 20 OCT images from five ex-vivo bovine eyes were
collected and segmented manually. To preserve edges and reduce speckle noise, each image
was then divided into 10 regions of interest (RoIs), with each RoI containing 100 A-scans.

Table 1 Retina’s layers, thickness, and optical properties.

Layer d (μm) n μa (1/cm) μs (1/cm) g

ILM 6 1.47 0.37 120 0.97

Retinal nerve fiber layer 5 1.47 0.37 120 0.97

GCL 19 1.47 0.40 114 0.97

IPL 27 1.47 0.37 134 0.98

Inner nuclear layer 20 1.47 0.34 130 0.97

OPL 20 1.47 0.38 166 0.98

ONL 60 1.47 0.31 110 0.98

ELM 4 1.47 0.38 136 0.97

Inner photoreceptor layer 12 1.47 0.29 134 0.97

Outer photoreceptor layer 27 1.47 0.9 357 0.93

RPE 10 1.47 80 1700 0.84

Choroid (70% blood) 250 1.47 0.75 500 0.94

Sclera 700 1.47 0.1 420 0.90
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These A-scans were then averaged individually. In our 13-layer model, the thickness of each
sublayer was determined according to the layer segmentation result and the common four-layer
model.36,37 The absorption coefficient μa, scattering coefficient μs, and anisotropy g of each sub-
layer were determined by using an exhaustive search within plus or minus ∼50% average values
of the neural retina from the original four-layer model36,37 to minimize the mean squared error
between simulated A-lines and the average A-lines of each RoI. The simulated result was on a
logarithmic scale with gamma correction. The simulation was conducted in the same open-sky
view in order it to be consistent with our bovine retinal study, in which the eye was dissected and
the vitreous was removed. The MCML algorithm was modified from Wang’s MCML
programs.34 The weight of photon packages w is initialized as 1 and it decreases at each inter-
action step, due to effects such as photon absorption and scattering. wr is the total weight of
phantoms that reflect from a reference arm, and ws is the total weight of phantoms that back-
scatter from the sample and fit the detecting condition (i.e., NA, detector position, and size). The
detected OCT signal intensity IðzÞ is convolved by the following equation:37

EQ-TARGET;temp:intralink-;e022;117;568IðzÞ ¼ I0
X
i

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wrwsðΔziÞ

p
cosðkðz − ΔziÞÞ exp

�
−
�
z − Δzi
lcoh

�
2
��

; (22)

where I0 is a constant value determined by the light source, wr and ws are the total weights of
photons with optical path difference Δzi, and lcoh is the coherence length of the light source. The
related coefficients NA of 0.05, the coherence length of 5 μm, and the transversal scanning step
of 10 μm were used. Four hundred consecutive A-lines were simulated with 5,000,000 weighted
photons. No sensitivity roll-off in depth and axial PSF were considered here.

3 Result

3.1 Numerical Simulation

3.1.1 Numerical simulation: A-mode

To initially test the feasibility of our method, two heterogeneous digital phantoms, each contain-
ing four layers, were simulated, with a thickness of 0.5 mm for the top three layers. The attenu-
ation coefficient μ and backscattering fraction R of each layer were set to be distinct.

Fig. 2 Numerical simulation result of (a), (b) OCT signal intensity of (a) first phantom and (b) sec-
ond phantom before and after signal compensation on a logarithmic scale; (c) measured back-
scattering fraction R of the first phantom during iteration; (d), (e) measured attenuation
coefficient μ of (d) first phantom and (e) second phantom with and without iteration; (f) example
of the partial average algorithm when calculating backscattering fraction R of the first phantom.
The ideal backscattering fraction R of the second phantom is 0.005, 0.007, 0.006, and 0.004,
respectively. Other theoretical values are represented by dashed lines.
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No additional constraints between μ and R were established. As shown in Figs. 2(a) and 2(b), the
logarithmic OCT A-line intensity IðzÞ (square of magnitude) decreases linearly, which agrees
with Eqs. (1) and (2). The simulated backscattering fraction R of the first phantom is plotted
in Fig. 2(c). The attenuation profiles measured by the conventional model using Eq. (10),15 and
our algorithm is plotted in Figs. 2(d) and 2(e). Confounded by the layer-dependent R of samples,
a large estimation bias can be seen using the conventional method without iteration (μ0). The
amount of measurement bias varies across the depth, and it is more pronounced near the boun-
dary of each layer, which is marked in gray. Note that this type of measuring error reduces to zero
in the bottom layer, which indicates that the error at a certain depth is only related to the deriva-
tive of R below that point, as we previously analyzed in Eq. (9). On the contrary, we obtained a
more accurate estimation result if we utilize the stationary iteration method for μ0 and substitute
IðzÞ∕RðzÞ for IðzÞ. As shown in Fig. 2(c), the initial value R0 appears to be constant within the
whole penetrating depth, R ≈ 6.7 × 10−3, and deviates from the true value as shown by the
dashed line. When the iteration starts, both the updated coefficients μk and Rk closely match
their theoretical values, shown in Figs. 2(c)–2(e). As shown in Figs. 2(c) and 2(d), if the threshold

of dRkðzÞ
dz is not appropriately selected, for example, when it falls within the range of 80

˜dRkðzÞ
dz and

˜
85

dRkðzÞ
dz , the inter-layer variations at ∼600 μm will be neglected by our algorithm. Moreover, it

leads to a significant underestimation of the attenuation coefficient μ within the range of 0 to
600 μm and R across the entire imaging depth. However, even under ideal conditions without
Gaussian noise, our method cannot achieve zero estimation errors between fμk; Rkg and true
values fμg; Rgg as shown in Figs. 2(c) and 2(e). These discrepancies stem from the absence
of global convergence of our algorithm (see the Supplemental Material for details).
Figure 2(f) shows the local averaging step of Rk. It keeps larger variations near boundaries while
ignoring small ones caused by the local structures of tissues and noise, which improves the sta-
bility of our algorithm.

After the optical properties were corrected, we applied the attenuation compensation method
given by Eq. (16) to correct the OCT signal intensity. As shown in Figs. 2(a) and 2(b), the intensity
distribution with attenuation compensation is consistent with the distribution of the samples’ opti-
cal properties with distinct μ and R. Compared to the initial OCTA-line intensity, it provides more
accurate morphological information over the entire imaging depth without the attenuation loss.

3.1.2 Monte Carlo simulation: B-mode

Based on the Monte Carlo modeling mentioned above, we recorded the photon trajectory and the
corresponding OCT intensity of the retinal tissue model. The simulated results have a distinct
layered structure that matches real samples as shown in Figs. 3(a) and 3(b). Compared to fre-
quently used four-layer retinal model, our modified version has a complex layered structure and
matches our ex-vivo samples better, as shown in Figs. 3(a) and 3(b). The regions above the inter-
nal limiting membrane (ILM) were air both in Figs. 3(a) and 3(b). A representative OCTA-scan
image from dashed red RoI in Fig. 3(b) is shown as a blue line [Fig. 3(c)]. There is no significant
exponential decrease within each layer because of its small thickness, absorption, and scattering
coefficients, which makes it difficult to compute the ground truth fμg; Rgg by a fitting curve.
Therefore, we only fit the intensity distribution IðzÞ and computed the ground truth μg of five
thicker layers, i.e., the ganglion cell layer (GCL), the inner plexiform layer (IPL), the outer
nuclear layer (ONL), the photoreceptor outer segment layer, and the choroid. Due to a lower
NA (NA = 0.05) and larger scattering anisotropy g, the signal intensity decays under the impact
of multiple scatter light, leading to a smaller μg, namely μg < μa þ μs.

23

Figures 3(d)–3(h) demonstrate the backscattering fraction and attenuation maps and corre-
sponding comparisons with theoretical values. To have a better comparison, we applied gamma
correction38 ðγ ¼ 0.75Þ to enhance the image contrast in attenuation map [Figs. 3(d) and 3(e)].
Governed by the scattering coefficients μs and anisotropy g, the ideal backscattering fraction Rg

first rises and then declines. It leads to various degrees of estimation biases of μ as shown
in Fig. 2(f). Simulation results proved that our iteration method could calculate the samples’
depth-dependent backscattering fraction R and leverage it to rectify the over- or under-estimation
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of attenuation. We also found that iterations of our model stop with significantly fewer epochs
when compared with the refractive-index-matched single-scattering A-line simulation in Fig. 2.
This situation is consistent with our subsequent experimental results. A possible reason is that the
multiple scattering, the axial PSF, and the scattering anisotropy39 work together to affect the OCT
signal distribution, leading to a larger interlayer change of R. The adaptive iterative feedback of
our algorithm could monitor the iteration procedure and stop it in time, which mitigates the effect
of over-compensation. However, there still exists a slight error between fμkðzÞ; RkðzÞg and the
true values fμg; Rgg in Figs. 3(f) and 3(g). They are caused by a lack of a global convergence of
our algorithm (see the Supplemental Material for details). Suitable constraint conditions can
improve the accuracy of our iterated approximating method.

3.2 Phantom Experiment
Eight distinct single-layer phantoms were constructed and imaged to evaluate our method. Note
the specular reflection signals were removed. The calculations of the ideal values of μg and Rg

were discussed in Sec. 2.5.1, as shown in Figs. 4(a) and 4(b). The experiment results agree with
the theoretical analysis that μg has a linear dependence on the scatterer concentration without the
influence of the absorber (Pearson correlation coefficient ρ ¼ 0.948).15,31 More importantly, it
demonstrates that the ratio of the absorber concentration to the scatter concentration has an
adverse effect on the backscattering faction Rgðρ ¼ 0.957Þ. To validate our method, these

Fig. 3 (a) The experimentally obtained real OCT image of the bovine retinal tissue for comparison.
(b) The simulated OCT image of the bovine retinal tissue obtained using Monte Carlo modeling.
The image size is set to 800 × 400 pixels with resolutions of 0.7 μm per pixel axially and 10 μm per
pixel laterally. (c) A representative OCT A-line signal within RoI indicated as a red dashed box in
(b). (d)–(f) Measured attenuation coefficient μ and representative A-line μ of the red dashed RoI
with and without iterations. (g)–(h) The comparison betweenmeasured backscattering fractionR of
the red dashed RoI and the measured backscattering map obtained using our iterative method.
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single-layer phantoms were stack together; examples of the A-line signal intensity is shown in
Fig. 4(c). The signal intensity is rescaled between 0 and 255. The first layered phantom contained
0.1 w%, 0.3 w% of TiO2, 0.5 w%, 0 w% of the black dye, whereas the second layered phantom
contained 0.2 w%, 0.1 w% of TiO2, 0 w%, 1.5 w% of the black dye, from the top to bottom.

Figures 5(a), 5(b), and 5(e) show OCT intensity and attenuation maps for the first phantom.
A representative A-line shown by the red region is plotted in Fig. 5(c). Due to the increasing

Fig. 4 (a) Measured average attenuation coefficient μ that changes with the particle concentration
by fitting an exponential curve. (b) Measured average backscattering fraction R that changes with
the particle concentration using Eq. (21). The signal trend is marked by a solid line.
(c) Representative OCT A-line signal intensity of the finalized home-made two-layer phantoms.

Fig. 5 Phantom experiment results. (a) and (h) OCT signal intensity of the first and second phan-
toms. (b) and (i) Measured attenuation coefficient μ without iteration. (c) and (f) The comparison
between calculated μ using different methods. (d) Measured backscattering fraction R of the first
phantom using our method. (e) and (j) Measured attenuation coefficient μ with iteration. (g) The
comparison between calculated R and ideal R in the dashed red RoI of (a) and (h).
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backscattering ratio Rg [Fig. 5(g)], the attenuation profile μ0 in the top layer is underestimated
severely. Simultaneously, we could notice a significant over-estimation bias in the same layer of
the second phantom, making μ0 almost homogeneous [Fig. 5(i)]. On the contrary, the attenuation
profiles μk using our method accurately matches the ground truth μg throughout the whole im-
aging depth as shown in Figs. 5(f) and 5(j). Our method is more robust against the backscattering
variation and contains less estimation bias. Compared with other recent methods, it does not need
a preliminary inter-layer segmentation, which is often difficult due to the fuzzy boundaries of
OCT intensity profiles and the noise induced by the abnormal distributions of scatterers.
Furthermore, it measures depth-dependent backscattering profiles as shown in Fig. 5(d). The
map of Rk shows significant inter-layer variations and very little intra-layer variations. The loss
of the intra-layer resolution is caused by the averaging of Rk, where the local changes of Rk are
neglected during the iteration [Fig. 2(f)]. Overall, the respective mean backscattering profiles Rk

of all A-scans agree well with the ideal value Rg, as shown in Fig. 5(g). To mitigate the influence
of the noise floor, the OCT intensity IðzÞ was extrapolated to infinity as explained earlier.
Therefore, the measured μk and IðzÞ might not match. To avoid this scenario, μk below sample
bottoms was set to zero.

3.3 Bovine Retinal Experiment
To further test our method, an ex vivo bovine retinal tissue was imaged by our OCT system, as
shown in Fig. 6(a). Figures 6(b), 6(d), and 6(e) show the corresponding attenuation and the back-
scattering fraction maps. Representative average A-lines of I, μ, and R of the red RoI are shown
in Figs. 6(f)–6(h). Certain retinal layers can be quite thin, 17 to 30 μm40 thick with various types
of cells, making it hard to precisely annotate the boundaries. The OCT signal intensity was di-
vided into three parts and the ground truth values of μ in each part were computed by Eq. (20),
respectively. The first layer consists of ILM through to outer plexiform layer (OPL), the second
layer consists of ONL through to ELM, and the third layer is the outer retinal layer. No layer
segmentation was conducted in our iterative method. As shown in Figs. 6(b) and 6(h), using the
conventional model leads to over- and under-estimation errors of μ0 when neglecting inter-layer
variations of Rg. Moreover, the measured attenuation profile μ0 of the outer retinal layer is
severely polluted due to the blood vessel, which casts shadows over the bottom layers, high-
lighted by the white RoIs. Our model could track the large variation of Rk adaptively and auto-
matically, as shown in Fig. 6(e), to rectify the value μk given by Eq. (13). The mean values of Rk

precisely matched the ground truth values, as shown in Fig. 6(f). Figure 6(c) shows the processed
OCT image with attenuation compensation by leveraging both μk and Rk, given by Eq. (16). Due
to the light attenuation, the reflected signal intensity from the external limiting membrane (ELM)
and sclera in Fig. 6(a) is faint and easily overshadowed by the speckle noise. On the contrary, our
intensity compensation method [Fig. 6(c)] enhances their visibility, especially in the vascular area
of the underlying choroid tissue, highlighted by the blue RoIs. It also eliminated shadow artifacts,
and no overamplified background noise is observed when using our algorithm.

4 Discussion
We proposed and presented a depth-resolved attenuation estimation algorithm that calculates the
depth-dependent backscattering fraction profile for SS-OCT imaging. The proposed method does
not assume the backscattering fraction R as a constant in modeling the attenuation profiles and
eliminates the under- and over-estimation problems it causes. Our proposed method provides a
more precise characterization of tissue without explicit interlayer segmentation. The method is
based on an iterative model using the nonlinear relationship between the irradiance, OCT inten-
sity, and unknown optical properties of tissue. To decouple equations, our approach neglects the
small variations in the backscattering fraction and applies appropriate constraint conditions for
the solution convergence. It does not assume μ or R to be constant at any depth nor requires a
layer segmentation preprocessing step. Furthermore, we utilized the corrected values of μ and R
to compensate for the OCT signal intensity loss caused by the decreased irradiance, thus reducing
the stripe noise and improving the global visibility of the OCT image.

The attenuation coefficient μ and the backscattering fraction R are two important char-
acteristics of samples that could be derived from OCT images. Governed by the different
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combinations of scatterers’ characteristics, such as the geometric size, the volume density, and
the nucleus, they represent the tissue characteristics from different perspectives.24 On the other
hand, they tend to be highly coupled to interacting light and highly correlated with the governing
equations. Therefore, their analytical solutions cannot be acquired directly without knowledge of
other characteristics. To address this issue, the recent studies often measured them individually
while assuming the other variables to be constant.15,22 These methods typically rely on accurate
layer segmentation, which may fail to perform the task when there are gradual changes in tissue
structure or extremely thin tissue layers, e.g., the retinal tissue. Inspired by these issues, we
blurred the backscattering term R and utilized it to rectify the estimation bias of μ by iterative
procedures. The fuzzy process maintains the significant variation of R while replacing the minor
ones with a local average. The related thresholds can be adjusted automatically during each iter-
ation, which applies to different ranges of R. This process is similar to a layer segmentation,
except that it is adaptive with dynamic changes and only determined by R. Therefore, it is more
sensible than the conventional intensity-based segmentation methods that are easily disturbed by
both μ and R. It is often hard to segment the OCT intensity profile successfully when the effects

Fig. 6 Experiment result of bovine retinal tissue. (a) and (c) OCT signal intensity of bovine retinal
tissue (a) before and (c) after our intensity compensation method. (b) and (d) Measured attenuation
coefficient μ (b) without and (d) with iteration. (e) Measured backscattering fraction R using our
method. (f) The comparison between calculated R and ideal R of red RoI in (e). (g) Representative
OCT A-line signal intensity of red RoI in (a). (h) The comparison between calculated μ using differ-
ent methods of red RoI in (d).
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of μ and R make boundaries blurry [shown in red in Fig. 4(c)]. During the iteration, the attenu-
ation profile over the whole depth can be corrected automatically without the layer-by-layer
analysis. Moreover, we believe that our method can be used in the visible spectrum when light
absorption cannot be neglected. In this scenario, attenuation μ is measured as μ ¼ μa þ μs, and R
is measured as a ratio of the backscattered light to the attenuated light.15 Although the light
absorption can reduce the magnitude of R, we can still rectify the measurement error of μ
by computing dR

dz . We acknowledge that our existing fuzzy processing of R needs to be fine-tuned
for tissue with less distinguishable layers, to extract the structure information from the noise. The
metric of variation of R also needs to be improved. If these prerequisites are met, the attenuation
profile over the entire depth can be corrected automatically by the derivative of R in Eq. (13)
without the layer-by-layer analysis.

It is crucial to design appropriate constraint conditions to control the loops when it has no
global convergence (see the Supplemental Material). The empirical results indicate that two to
four loops are typically enough to yield a reasonable solution for both representative phantoms
and real tissues. In Fig. 7, we summarized the mean percentage errors between estimated values
fμk; Rkg and true values fμg; Rgg obtained from all simulated and experimental results in Figs. 3,
5, and 6.

Based on Fig. 7, the first loop usually has relatively little impact on the accuracy. However,
the second to fourth loops prove to be sufficient in reducing errors to below 10% for both tissues
and phantoms used. Based on this information and the low complexity of each loop, our model
has a strong potential for OCT-based real-time tissue assessment. One possible solution to
enhance its performance is to convert the existing Matlab codes into a more efficient program-
ming language. In addition, employing parallel processing with GPUs could further optimize the
computation time, reducing it to hundreds of milliseconds per B-scan (1024 A-scans). Our pro-
posed constraint conditions are also based on reasonable ranges of tissue’s optical properties,
degree of compensation, and iterative times. For a wider application, we acknowledge that they
might need further refinement to suit a particular tissue. The large drop in estimation errors near
each interface can be another way to further refine constraint conditions, indicated by the black
arrow in Fig. 2(e).

The presence of multiple scattering is also an important impact on the quantitative attenu-
ation characterization, as we discussed in Figs. 3 and 6 of retina images. Under this circumstance,
the high scattering anisotropy g and the small scattering angle jointly lead to a larger contribution
of highly forward directed scattering behavior, with the rise of the backscattering fraction.23 It
emphasizes the importance of our iterative computation model, which can reduce additive errors
caused by the pixelwise variation of R. Our results suggest that multiple scattering may have
more influence near each interface, and the effect on estimating μ could be reduced by the better
control of the iterations. It is worth noting that backscattering fractions R calculated by our
method can highlight the layer-to-layer boundaries, which is helpful in various clinical

Fig. 7 (a) The mean percentage errors between the estimated attenuation coefficients μk and true
attenuation coefficients μg within all red dashed RoIs of phantoms and tissues in Figs. 3, 5, and 6.
(b) The mean percentage errors between the estimated backscattering fractions Rk and true back-
scattering fractions Rg within all red dashed RoIs of phantoms and tissues in Figs. 3, 5, and 6.
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applications needing tissue layer segmentation. The further work might include analyzing the
analytic solutions of optical properties under the multiple scattering modeling.

Our proposed method is evaluated through Monte Carlo simulation and OCT imaging. Both
the iterative attenuation estimation model and the intensity-based compensation model demon-
strate promising results over a wider depth, which can be advantageous for imaging hetero-
geneous tissues with a complex and subtle layered structure, such as intravascular tissue,10,13

retina,41 and brain.42

5 Conclusion
In this study, we presented a novel depth-resolved attenuation and backscattering analysis method
that could remedy the estimation bias induced by depth-wise variations in backscattering fraction
R. It also enables a depth-resolved calculation of the backscattering fraction, and an intensity-
based compensation model is derived utilizing the corrected tissues’ optical properties. The meth-
odology was validated through a simulated OCT A-line image, the Monte Carlo model, and
experimental OCT imaging. The results demonstrated that this algorithm is capable of precisely
estimating attenuation coefficients and the depth-dependent backscattering fractions in complex
scattering samples, without any preliminary steps, such as layer segmentation. Therefore, it has
great potential for the quantitative characterization of heterogeneous structures and for enlarging
the related detectable regions of tissue for OCT imaging applications.
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