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Abstract. One of the remaining challenges in functional connectivity (FC) studies is investigation of the temporal
variability of FC networks. Recent studies focusing on the dynamic FC mostly use functional magnetic reso-
nance imaging as an imaging tool to investigate the temporal variability of FC. We attempted to quantify
this variability via analyzing the functional near-infrared spectroscopy (fNIRS) signals, which were recorded
from the prefrontal cortex (PFC) of 12 healthy subjects during a Stroop test. Mutual information was used
as a metric to determine functional connectivity between PFC regions. Two-dimensional correlation based sim-
ilarity measure was used as a method to analyze within-subject and intersubject consistency of FC maps and
how they change in time. We found that within-subject consistency (0.61� 0.09) is higher than intersubject con-
sistency (0.28� 0.13). Within-subject consistency was not found to be task-specific. Results also revealed that
there is a gradual change in FC patterns during a Stroop session for congruent and neutral conditions, where
there is no such trend in the presence of an interference effect. In conclusion, we have demonstrated the
between-subject, within-subject, and temporal variability of FC and the feasibility of using fNIRS for studying
dynamic FC. © 2015 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JBO.20.8.086012]
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1 Introduction
Due to large variations in neuroscientific findings, researchers
have long avoided investigating moment-to-moment variability
of neuronal activity and have chosen to comment on the grand
average of ensemble data. The source of this variability is usu-
ally attributed to the presence of many forms of exogenous and
endogenous noise that increase the complexity of data, specifi-
cally the neuroimaging data. The ultimate goal of neuroimaging
researchers, hence, is to extract meaningful information from an
ensemble of data by proposing methods to minimize the varia-
tions.1 Other than instrumentation noise [iðtÞ], the natural con-
sequence of operation of the brain leads to generation of
physiological noise [background noise, bðtÞ]. Buried under
these two types of noise is also the true moment-to-moment vari-
ability of neuronal activity [nðtÞ], which should be distinguished
from instrumentation and background noise.2 Hence, a generic
neuroimaging data model dðtÞ can be written as the sum of
these independent or weakly dependent (as in the case of the
background physiological noise with the neural activity) data:
dðtÞ ¼ nðtÞ þ bðtÞ þ iðtÞ. One easy way to eliminate the uncor-
related noise signals is to perform a task N times, where the
expectation of the neuronal activity [n̄ðtÞ ¼ P

knkðtÞ, k ¼
1: : : N) converges to a hypothetical true neuronal activity
[nHðtÞ], while the noise terms approach zero [īðtÞ ≈ 0 and
b̄ðtÞ ≈ 0]. Here the main assumption is that nkðtÞ is stationary,
meaning each time the task is repeated the neuronal signal is
very similar to the previous ones.

Functional connectivity (FC) refers to the statistical relations
of activations of distinct neuronal populations without any
reference to causal or anatomic connections.3 Conventionally,
FC is computed by correlating a time series signal from one
area [functional magnetic resonance imaging (fMRI) voxel or
electroencephalography (EEG) electrode] with a signal from
another area. The result of this analysis provides an FC matrix,
which can then be further analyzed to provide a map or a net-
work topology. Usually the whole time series are used to com-
pute these correlation matrices, which inherently come with
the assumption that the initial condition of the brain remains
constant throughout the task; hence, neuroimaging data are
stationary [i.e., nHðtÞ ≈ n̄ðtÞ]. This assumption surely poses a
limitation to investigate the dynamical properties of the FC
matrices. Even when several task blocks are used, an average
of signals corresponding to these task blocks are computed
[i.e., n̄TðtÞ, T is the task type] in order to increase the strength
of the statistics.4 Only recently have scientists started investi-
gating the dynamical properties of FC networks and how FC
maps obtained from the beginning of a task resembled the
maps obtained toward the end of a session (which is termed
the “consistency of FC maps”).5,6 Several studies have shown
that FC vary due to differences in mental tasks and changes
in FC are observed even in the same imaging session.7,8

Consequently, dynamic FC, investigation of temporal properties
of FC, is becoming an emerging topic.

Although dynamic properties of FC have been studied
recently, most of these studies use fMRI as an imaging tool.
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There has been no study in dynamic FC with functional near-
infrared spectroscopy (fNIRS) as an imaging tool, to our knowl-
edge. fNIRS is a promising functional imaging tool, especially
when temporal resolution is considered: it is very difficult to
have higher temporal resolution with fMRI, whereas with
fNIRS, much higher temporal resolution might be possible.
Therefore, fNIRS might be an important tool for investigation
of dynamic FC. Previous studies have shown that it is feasible
to apply FC methods to fNIRS signals.9–13 In this study, we
explored within-subject and intersubject consistency and tempo-
ral variability of FC networks using fNIRS in the prefrontal cor-
tex (PFC) of the brain. We questioned whether it is feasible to
study the temporal changes in FC computed from fNIRS signals
that represent the neuronal dynamics during a cognitive task
[i.e., nTk ðtÞ].

Hence, we decided to focus our study on a pure cognitive
task and used the well-known Stroop test to obtain the FC
maps. In short, we questioned whether the brain dynamics dur-
ing a specific instant (t), a specific stimulus type (T), for a given
person (k) [hence nTk ðtÞ] remain unchanged as the subject per-
forms the task over and over during the course of a study. Hence,
the main question is how similar (or different) the individual
brain responses are for a given task [i.e., nTðiÞk ðtÞ≟nTðjÞk ðtÞ],
where TðiÞ and TðjÞ are the i’th and j’th blocks of the same
T stimulus type (i.e., congruent blocks).

2 Methods

2.1 Data Collection

2.1.1 Subjects

Twelve healthy subjects recruited from college graduate stu-
dents volunteered for this study (seven males, ages 24� 2.3).
The study was approved by the Ethics Board of Bogazici
University and informed consent forms were signed and col-
lected from the participants.

2.1.2 Protocol

A modified version of the color-word matching Stroop task was
used in the study.14 This task consists of three different stimulus
conditions: neutral (N), congruent (C), and incongruent (IC)
(Fig. 1). The subjects were asked to detect if the word below
defines the color of the word above correctly or not. In the neu-
tral case, a nonverbal stimulus was introduced in the upper

word, as a series of X’s. Subjects made a left mouse click
with their right index finger to indicate a match case and a
right mouse click with their middle finger for nonmatching
cases.

Five blocks were applied for each condition (Fig. 2). Each
block consisted of six trials with an interstimulus interval of
4 s. Word pairs were presented on the screen until the response
was given with a maximum time of 2.5 s. Between each task
block, there was a short resting period of 20 s. The order of
task blocks were randomized for each subject. The randomiza-
tion algorithm prevented tasks of the same type to be presented
successively.

2.1.3 Functional near-infrared spectroscopy device

In this study, a 16-channel continuous wave-fNIRS device
(NIROXCOPE 301) was used, which was developed in the
Neuro-Optical Imaging Laboratory of Boğaziçi University.15–17

This device has four sources of light, surrounded by 10 optical
sensors. The probe geometry is a rectangular formation, each
source surrounded by four detectors with a source–detector
spacing set at 2.5 cm. At a given time, only one of these light
sources and the surrounding four detectors are active. Therefore,
16 time-series data were collected from each subject corre-
sponding to 16 regions in the PFC region, given in Fig. 3.
Signals were acquired every 0.57 s, which gives the temporal
resolution of the time-series signals collected. The data were
previously recorded and published in another study.17

2.2 Data Preprocessing

During test sessions, time-series signals from 16 regions of PFC
defined in Fig. 3 were recorded. The raw data collected were

Fig. 1 Three different stimulus conditions in the Stroop task: neutral,
congruent, and incongruent. The words in the upper row are the cases
where the word below wrongly defines the color of the word above.
The other three questions given at the bottom row represent the oppo-
site case; the word below correctly defines the color of the word
above.

Fig. 2 A sequence for the three different stimuli in the Stroop task:
neutral, congruent, and incongruent. Black lines indicate 20 s of
rest. An initial 60 s of rest precedes the task.

Fig. 3 Approximate anatomical sampling of the ARGES Cerebro™
functional near-infrared spectroscopy (fNIRS) system from the pre-
frontal cortex.
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first used to generate the time-series of changes in oxyhemoglo-
bin (½HbO2�) and deoxyhemoglobin ([Hb]), by using a modified
version of the Beer-Lambert law. A previous study suggested
that ½HbO2� has the strongest correlation with the BOLD signal
measured by fMRI.18 Therefore, ½HbO2� concentrations were
computed for the 16 channels over the PFC. Then these 16
time-series signals were filtered digitally by a fourth-order but-
terworth bandpass filter at the range of 0.03 to 0.25 Hz to elimi-
nate slow drifts and physiological noise by using the butter
(4,[0.03,0.25]/(Fs/2)) code in MATLAB®.16,17,19

2.3 Functional Connectivity Matrices

Functional connectivity between brain regions can be evaluated
using various different measures, including correlation,20 partial
correlation,21 coherence,22 mutual information,23 and autore-
gressive models.24 Mutual information was used in this study
to compute the functional connectivity. Mutual information
has an advantage compared to correlation since it can detect
nonlinear dependencies of neural signals,25,26 and it has been
used in the literature as a metric to estimate FC in EEG and
fMRI studies.23,27,28

Zhou et al. proposed a method for computing mutual infor-
mation of two signals based on their coherence in the frequency
domain25 which was used in this study. The mutual information
of the i’th and j’th time-series in frequency domain is given as

EQ-TARGET;temp:intralink-;e001;63;469ϕði; jÞ ¼ ½1 − expð−2δijÞ�12; (1)

where

EQ-TARGET;temp:intralink-;e002;63;427δij ¼
1

2π

Z
λ2

λ1
log½1 − cohijðλÞ�dλ; (2)

and the cross-coherence function cohijðλÞ is given as

EQ-TARGET;temp:intralink-;e003;63;379cohijðλÞ ¼ jRijðλÞj2 ¼
jfijðλÞj2

fiiðλÞfjjðλÞ
; (3)

where fijðλÞ is the cross spectral density between the i’th and
j’th time-series; and fiiðλÞ and fjjðλÞ are the spectral densities
of the i’th and j’th time-series, respectively.25

In Eq. (2), mutual information is computed as a sum of
coherence values in a frequency band. In Eq. (1), this value
is normalized into the range of (0,1).

Let ϕði; jÞ denote the mutual information of signals i and j.
All pair-wise mutual information (MI) of 16 signals obtained by
an fNIRS constructs a 16 × 16 MI matrix A ¼ ½aij�, where
aij ¼ ϕði; jÞ. We use the properties of mutual information to
simplify this matrix. For signals i and j, (1) MI of a signal
with itself is 1, i.e., ϕði; iÞ ¼ 1 for all i and (2) MI is symmetric,
i.e., ϕði; jÞ ¼ ϕðj; iÞ. Therefore, the upper triangular part of the
16 × 16 MI matrix carries all the information (Fig. 4). Redefine
A ¼ ai;j as

EQ-TARGET;temp:intralink-;sec2.3;63;172aij ¼
�
ϕði; jÞ; j > i;
Ā; otherwise

;

where Ā is the mean value, that is,

EQ-TARGET;temp:intralink-;sec2.3;63;118Ā ¼
XC
i¼1

XC
j¼iþ1

ϕði; jÞ:

This revised matrix Ā is called the FC matrix.

FC matrices were computed from signals corresponding to
the time range of each block. Since there were 15 stimulus
blocks in total (five neutral, five congruent, five incongruent)
with rest periods in between, 15 FC matrices were generated
per subject corresponding to 15 block periods (rest periods
are ignored). This is described in Fig. 5. Given the 0.57 s of
temporal resolution and 24 s period for each task block, each
task block included ∼42 time-points.

The following conventions are used in the equations in the
following sections:

N ¼ 12, the number of subjects.
M ¼ 15, the total number of task blocks (5N + 5C

+ 5IC).
T ¼ 5, the number of blocks of each test type.
C ¼ 16, the number of fNIRS channels.

For each subject, there are 16 × 16 FC matrices for each per-
son. For a person k, we group these 15 matrices such that the
first five are the neutral FC matrices denoted by A1

k; · · · ; A
5
k. The

second five are the congruent ones, A6
k; · · · ; A

10
k . Finally, the last

five are the incongruent FC matrices, namely, A11
k ; · · · ; A15

k .

2.4 Similarity and Consistency Analysis

Two-dimensional (2-D) correlation is a method commonly used
to compute the similarity of two images or patterns, especially
for registration purposes.29 The similarity of two FC networks
can be computed by 2-D correlation.5 In this study, the similarity
was computed as

EQ-TARGET;temp:intralink-;e004;326;422sðA; BÞ ¼
P

i

P
j½ðaij − ĀÞðbij − B̄Þ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

½P
i

P
j
ðaij − ĀÞ2�½P

i

P
j
ðbij − B̄Þ2�

r : (4)

Here, A and B are two different FC matrices and Ā and B̄ are
the means of them, respectively. Note that (1) the similarity of a
matrix with itself is 1, i.e., sðA; AÞ ¼ 1 for all A, (2) the value of

Fig. 4 Functional connectivity (FC) matrix computed for a subject
based on fNIRS signals recorded during the Stroop task. Diagonal
and lower triangle entries are removed since the matrix is symmetric
and diagonal entries are equal to 1.
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the similarity is within ð−1;1Þ range, and (3) the similarity is
also symmetric, i.e., sðA; BÞ ¼ sðB;AÞ. Since lower triangle
and diagonal entries hold no additional information, these
entires were replaced by the mean of the upper triangle values.5

The similarity of the matrices can be used to investigate
the consistency of FC maps for subjects. Now, define Ck;l, the
consistency of subjects ðk; lÞ, as

EQ-TARGET;temp:intralink-;sec2.4;63;675Ck;l ¼
1�
M
2

�XM
i¼1

XM
j¼iþ1

sðAi
k; A

j
l Þ:

Ck;k is called the within-subject consistency. Intersubject consis-
tency can be computed by the average of every pair of subjects
as

EQ-TARGET;temp:intralink-;e005;63;586CIS ¼
1�
N
2

�XN
k¼1

XN
l¼kþ1

Ck;l: (5)

Finally, we computed the within-task and intertask consis-
tency of FC matrices for each subject. If the within-task consis-
tency is significantly higher than the intertask consistency, this
means that FC patterns differ for different cognitive tasks. To
measure within-task consistency, we computed the average sim-
ilarity of FC matrices of the same stimulus condition (neutral,
congruent, or incongruent) for each subject.

Let b be 0,5,10, representing the index of the Ab
k FC

matrices for the neutral, congruent, and incongruent task blocks,
respectively. Then the average within-task (of the same stimulus
condition) similarity ST for any condition is given as

EQ-TARGET;temp:intralink-;e006;326;752Sb ¼ 1

N

�
5

2

�XN
k¼1

XT
i¼1

XT
j¼iþ1

sðAbþi
k ; Abþj

k Þ: (6)

The within-task consistencies for congruent and incongruent
stimulus conditions are computed in the same way.

To measure the intertask consistency, we computed the aver-
age similarity of FC matrices corresponding to different tasks
for each subject. We computed the average neutral-congruent
FC map similarity and repeated it for neutral-incongruent and
congruent-incongruent.

2.5 Time-Varying Changes in FC Networks

In many studies of functional imaging, connectivity values are
computed over the whole time-series to find the FC map, which
is based on the assumption that FC map characteristics do not
change during the recording session. In order to challenge this
assumption, we investigated the resemblance of the consecutive
FC matrices for a subject. We tested whether the similarity
between two FC matrices of the same subject remained the
same or not when the question blocks were presented closer
to each other. In the case of a progressive change in the patterns
of FC maps of subjects, test block pairs that are distant in time
should show less similarity in their FC maps, compared to the
test block pairs that are closer in time.

The time-differences of pairs of Stroop blocks versus their
similarity in FC matrices were plotted. Since there are 15
task blocks in our Stroop test protocol with the same duration,
the time-difference between each arbitrarily selected task block
can have, at most, 14 different values for a subject. And con-
sidering that the randomization algorithm prevents successive

Fig. 5 This figure describes how time series data from 16 fNIRS channels was segmented and how
mutual information based connectivity matrices were computed. The fNIRS signals of a single subject
are seen in the figure. There are 15 consecutive task blocks (randomly distributed 5 N, 5 C, 5 IC task
blocks), and there are resting periods between task blocks. The connectivity matrix corresponding to
each task block is computed by taking the signals from the beginning instant of the task block to the
end of the same task block. In the end, we have 15 connectivity matrices for each subject.
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presentation of two tasks of the same type, there are 13 possible
time-difference values for a given task type. Since the order of
congruent, neutral, and incongruent questions were arranged
randomly, there is a variable number of block pairs that have
certain differences in their times of presentation. We averaged
FC similarity values of all task block pairs that have the same
time distance in all subjects. We computed these values for neu-
tral, congruent, and incongruent task types independently and
observed the correlation between the time-difference and FC
map similarity variables.

2.6 Behavioral Differences in Task Types and
Time-Varying Changes in Behavioral
Responses

We explored the behavioral differences between task types and
temporal changes in the behavioral response of the subjects.
We investigated behavioral differences of task types by
comparing the reaction time and accuracy of responses of
the subjects, by using nonpaired t tests between each pair
of task types.

Temporal changes in the behavioral response were investi-
gated in terms of changes in the response times in the Stroop
task. We averaged reaction times of each task block for each
subject, and we compared the first and last task blocks of
each task type in terms of their reaction times by using paired
t tests. We also plotted the average reaction times of task blocks
ordered in time for each task type. In order to be able to observe
the trends in reaction time without the effects of outliers, we
applied outlier elimination, which removed the reaction time
values outside of the 30 percent window of the mean reaction
time of the subject on a specific task type. These outlier values
were replaced by mean values.

3 Results

3.1 Behavioral Results

3.1.1 Behavioral differences between cognitive tasks

The comparison of reaction times for three different stimulus
conditions neutral (N), congruent (C), and incongruent (I) are

given in Fig. 6, and the mean values are 0.98 s, 1.05 s, and
1.17 s [Fð2;33Þ ¼ 3.15, p ¼ 0.056], respectively. Reaction
times were significantly longer in the incongruent condition
compared to the neutral (p < 0.0001) and congruent
(p ¼ 0.0003) conditions, while differences between reaction
times for congruent and neutral conditions were marginally sig-
nificant (p ¼ 0.056).

A comparison of correct answers among neutral, congruent,
and incongruent conditions is given in Fig. 7. The average num-
ber of correct answers was 29.5 (98.3%) for neutral condition,
29.2 (97.2%) for the congruent condition, and 27.8 (92.8%) for
the incongruent condition out of 30 questions [Fð2;33Þ ¼ 3.49,
p ¼ 0.046]. A t test showed that the numbers of correct answers
that subjects gave to the congruent and neutral questions are not
significantly different. On the other hand, it is seen that number
of correct answers decreases significantly for incongruent
questions.

3.1.2 Temporal changes in behavior during
the Stroop test

Table 1 shows the reaction times for the first and last task blocks
for each task type. Results of the paired t tests are also given.
First task blocks have a higher reaction time compared to last
task blocks for all task types.

Figure 8 illustrates how reaction times change during the
Stroop test for neutral, congruent, and incongruent tasks. The
values are the average of all 12 subjects. Therefore, initially
there were 360 reaction time values for each type of task (12
people × 5 blocks per task × 6 stimuli per block). Four of
these 360 values were detected as outliers of the corresponding
subjects for the corresponding tasks and, therefore, were
replaced by corresponding mean values. It is observed that reac-
tion time tends to decrease during the Stroop test for the con-
gruent and incongruent task types. For neutral type questions,
reaction times did not decrease further after an initial drop.

3.2 Functional Connectivity Results

3.2.1 Consistency of functional connectivity networks

The average within-subject consistency of the FC matrices was
computed as 0.61� 0.09 for 12 healthy control subjects. The

Fig. 6 The comparison results for reaction times in three different stimulus conditions: neutral (N), con-
gruent (C), and incongruent (I) conditions.
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result of intersubject consistency was found as 0.28� 0.13,
which is significantly lower than the within-subject consistency
(p < 0.001). The comparison of within-subject consistency and
intersubject consistency is given in Fig. 9.

It was found that within-subject consistency does not change
with task type (stimulus condition). Both within-task and inter-
task consistency values are in the range between 0.605 and
0.615, and t test confirmed that there is no significant difference
between them.

3.2.2 Time-varying changes in FC matrices

The relation between similarities of FC matrixes and their
distance in time is given in Fig. 10. The correlation between
time-difference and FC matrix similarity is −0.64 (p ¼ 0.019)
for the neutral condition and −0.79 (p ¼ 0.001) for the congru-
ent condition. It is seen that FC matrices closer in their presen-
tation times are more similar to each other and the similarity
drops when they have a larger time-difference between them.
This trend is not statistically significant for incongruent ques-
tions (p ¼ 0.38).

4 Discussion
In this study, we investigated the consistency and temporal vari-
ability of FC measured by fNIRS. We questioned whether if it is
feasible to study dynamic properties of FC with fNIRS. We used
a Stroop test instead of measuring resting state brain activity, in
order to evoke a measurable PFC activity. Another reason for
this approach is that it is not clear what the resting state is,
and it has been shown that during a so-called resting state,
there might be significant cognitive activity.30–32 Moreover,

Fig. 7 The comparison results for accuracy in three different stimulus conditions: neutral (N), congruent
(C), and incongruent (I) conditions.

Table 1 Average reaction time values for first and last task blocks for
each task type.

Neutral Congruent Incongruent

First task block 1.077 s (0.181) 1.132 s (0.296) 1.259 s (0.311)

Last task block 0.948 s (0.158) 0.973 s (0.174) 1.086 s (0.2)

p values 0.024 0.009 0.003

Fig. 8 Changes in reaction times for each task block during the Stroop test.
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previous studies suggest that the Stroop interference effect is
related to the activity of PFC,33–37 from which we measure
the fNIRS signals. Functional connectivity during the Stroop
task has also been studied in the literature. A study by
Kadosh et al.38 revealed functional networks that are active dur-
ing the Stroop task a found that these networks include PFC
region. A study by Harrison et al. revealed increased connectiv-
ity (measured with canonical variants) in the interference con-
dition. Several previous studies have shown that it is possible to
study functional connectivity with fNIRS.11,12,16,39–54 Aydore et
al. studied functional connectivity with fNIRS using the Stroop
test, and their study revealed increased information transfer in
the interference condition.16 However, most of these studies
have ignored the temporal and/or interindividual variability of
functional connectivity. Consistency and temporal variability
of FC matrices were investigated in this study. Although tem-
poral variability of FC has emerged as an important topic
recently, the studies have used fMRI as an imaging tool so
far. Our study questions whether it is feasible to study dynamic
FC with optical signals, fNIRS. Although the temporal resolu-
tion used in this study is only slightly higher than common tem-
poral resolutions used in fMRI, it is possible to achieve a much
higher temporal resolution with fNIRS, which might have a key
importance in dynamic FC studies in the future.

When we look at the behavioral results in our tests, it can be
seen that the incongruent type questions of the Stroop test
resulted in significantly higher reaction times compared to
the congruent and neutral type questions. This was an expected
result from the Stroop test, since there is a well known interfer-
ence effect in the incongruent type questions.14 When the verbal
and color inputs conflict with each other, which is the case in
incongruent type questions, subjects need to process them both
and suppress one of them to decide. This is called the interfer-
ence effect, which results in higher reaction times, as our results
also confirm. When reaction times for congruent and neutral
conditions are compared, it can be seen that tasks with the con-
gruent condition resulted in higher reaction times, where the
difference was marginally significant. This means that the
facilitation effect was not observed, which is an effect when
two different stimulus modalities are congruent and they facili-
tate each other, resulting in lower reaction times. But the facili-
tation effect is not considered as significant as the interference
effect and it is not always observed in Stroop tests.4,12,55 It was
suggested that tasks with a congruent condition can result in

even higher reaction times, due to the conflict that arises in
deciding which dimension (color or word) should be attended
for responding.56

The consistency in patterns of FC networks measured during
the Stroop task was found to be 0.61, which was measured by
correlation of the weighted FC networks. But no difference
between the intertask and within-task consistency could be
detected. On the other hand, intersubject consistency (0.28)
was found to be lower than the within-subject consistency
(Fig. 9). Similar results were found in a previous study done
with EEG, where within-subject consistency in the same record-
ing session was found to be 0.84 and intersubject consistency
was found to be 0.42.5 In a previous study with fMRI, research-
ers investigated the consistency of FC networks within different
recording sessions, and they found that intersubject consistency
was lower than within-subject consistency.6 Results found in
the present study are consistent with these previous studies in
the literature.

The low intersubject similarity among the maps might be
merely due to different wiring patterns among subjects or sys-
temic error since there is a lack of coregistration algorithm for
the probe placement on each subject. Population analysis of FC
maps of subjects based on fNIRS signals is being studied in the
literature, where FC maps of different subjects are averaged or
constructed with a common procedure.36, 57 The low intersubject
consistency found in this study implies that making a population
analysis of FC matrices of different subjects might be risky, due
to differences in patterns of FC matrices of individuals.
Although there are some studies for developing registration pro-
tocols for fNIRS,57 there is no standard method in the literature
yet. The results of this study show the necessity of such methods
before performing a population analysis on the functional con-
nectivity maps computed from fNIRS signals. A proper regis-
tration method is required to investigate the differences in FC
characteristics between subjects.

The within-subject consistency found for FC matrices
implies that a consistent FC pattern exists in PFC during the
Stroop task along with a variability of the FC matrices of the
same subject. Some part of this variation could be related to
noise, but not necessarily noise of the measurement system.
Noise is also present in the brain and it is considered to be a
natural consequence of the operation of the brain.9 In several
studies, such noise has been termed as task- related spontaneous
fluctuations, physiological in origin.11 In order to understand
whether the variability in FC networks is completely caused
by spontaneous fluctuations (noise) in the brain, or if there is
also a contribution of a temporal change throughout the mental
task applied to the subjects, we investigated the time lag–FC
network similarity relationship.

The time lag–similarity relationship of FC matrices showed
that, for congruent and neutral type questions, FC map patterns
of pairs of Stroop question blocks are more similar if they are
closer in time (Fig. 10). We interpret this result as a consequence
of a progressive change in FC patterns during the Stroop task for
neutral and congruent stimulus conditions. When we analyze
the temporal dynamics of the behavioral responses, we see that
reaction times of the subjects decrease throughout the test.
Although this is not the case for the neutral task blocks after
the second task block, it can be argued that the reaction time
for these task blocks are already very short and it is not possible
to decrease further. We interpret these results as the subjects
learning and getting used to the questions during the Stroop test.

Fig. 9 Within-subject versus intersubject consistency.
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Dalmış and Akın: Similarity analysis of functional connectivity with functional. . .



Therefore, the progressive change detected in FC maps of con-
gruent and neutral tasks can be interpreted as a consequence of
this habituation effect. It is interesting that no such trend was
detected for the incongruent condition. The reason might be
that the task is already very difficult to be learned and adapted
to in such a short amount of time.

The interpretation of the progressive changes in FC patterns
as habituation is consistent with the previous studies that have
shown the relation between the activity in PFC and attention.33–35,38

The most significant result of this study is that we have dem-
onstrated the feasibility of studying the temporal variability of
functional connectivity by using fNIRS.

5 Conclusion
In this study, we investigated how similar the FC networks are in
a single imaging session throughout a cognitive task, and how
consistent they are between-subjects based on fNIRS signals
obtained from PFC region. The ability of the brain to adapt
and develop strategies during a repetitive cognitive task is
known to lead to a faster and more accurate completion of
such tasks. This adaptation can be clearly seen in the decrease
of the reaction times each time the task is repeated. The hypoth-
esis in terms of how this adaptation is best represented in brain
imaging is that the connectivity pattern during these repetitive
tasks should somehow differ. So we tested both within-subject
and intersubject consistency and the temporal variability of FC
networks. Our results show that there is a consistency in the FC
networks obtained from a single subject during the Stroop task,
while there is also a temporal change in these networks during
the task. So the strategy development actually leads to a conver-
gence of the FC network while there is an inherent network
structure that is preserved throughout the task as observed by
the approximately 0.6 within-subject similarity (i.e., 60% sim-
ilarity). Our results show that fNIRS can be used as an imaging
tool for investigating the dynamic properties of FC.
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