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Abstract. Optical imaging techniques based on multiple light scattering generally have poor sensitivity to the
orientation and direction of microscopic light scattering structures. In order to address this limitation, we introduce
a spatial frequency domain method for imaging contrast from oriented scattering structures by measuring the
angular-dependence of structured light reflectance. The measurement is made by projecting sinusoidal patterns
of light intensity on a sample, and measuring the degree to which the patterns are blurred as a function of the
projection angle. We derive a spatial Fourier domain solution to an anisotropic diffusion model. This solution
predicts the effects of bulk scattering orientation on the amplitude and phase of the projected patterns. We
introduce a new contrast function based on a scattering orientation index (SOI) which is sensitive to the degree to
which light scattering is directionally dependent. We validate the technique using tissue simulating phantoms, and
ex vivo samples of muscle and brain. Our results show that SOI is independent of the overall amount of bulk light
scattering and absorption, and that isotropic versus oriented scattering structures can be clearly distinguished. We
determine the orientation of subsurface microscopic scattering structures located up to 600 μm beneath highly
scattering (μ′

s = 1.5 mm− 1) material. C©2011 Society of Photo-Optical Instrumentation Engineers (SPIE). [DOI: 10.1117/1.3657823]
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1 Introduction
Many tissue types, including bone, muscle, skin, and white mat-
ter in the brain, have orientated internal structures such that the
degree of optical scattering depends on the direction of light
propagation. The spatial-dependence of the bulk (e.g., multiple)
scattering intensity in these tissues is determined by their mi-
croscopic structure. Imaging the directionality of multiple light
scattering may provide a noninvasive way to interrogate tissue
microscopic structure, and may aid in the early detection and
diagnosis of disease.

The orientational dependence of multiple light scatter-
ing from ordered structures has been measured in biologi-
cal tissues including bovine tendon,1 chicken breast,2 skin,3, 4

bone,4 muscle,5 and dentin.6 It has also been tested in tis-
sue phantoms.7–9 Researchers have modeled multiple scatter-
ing from ordered structures using Monte Carlo simulations of
radiative transport,10 as well as random walk11, 12 and finite ele-
ment implementations13 in the diffusive regime. In all of these
studies, the emphasis has been to determine the orientation of
large homogeneous scattering regions by looking for elliptical
equal intensity profiles of the backscattered or transmitted light
from a localized (e.g., point) source. Greater eccentricity of the
ellipse indicates a higher degree of scattering structure, and the
orientation of the ellipse gives the direction of the underlying
structure. Such measurements of scattering orientation give the
average scattering properties over an area of a few centimeters.
This concept is similar to the classical scattering anisotropy, g,
which describes the average cosine of the scattering angle over a
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single scattering length (�), while scattering orientation applies
to multiple light scattering based on length scales that are on the
order of the transport scattering length, �∗ ∼ �/(1 − g).

Spatial frequency domain imaging (SFDI) is a wide-field
method which measures the absorption and scattering proper-
ties of turbid media such as biological tissue.14, 15 It combines
CCD camera-based imaging with diffuse optical methods in
order to simultaneously determine the spatially varying optical
properties throughout a sample. Instead of scanning a collimated
source beam across the sample, optical properties at each detec-
tion location are determined simultaneously by measuring the
attenuation of sinusoidal patterns of light which are projected
onto the sample at varying spatial frequencies. SFDI has been
used to quantitatively image stroke,16 brain injury,17 cortical
spreading depression,18 layered structures in skin,19 and depth
resolved fluorescent signals.20 It has also been used to perform
tomographic imaging,21, 22 detect inhomogeneities,23 and deter-
mine optical properties over a broad range.24

In this manuscript, we use SFDI to image spatially varying
scattering orientation in highly scattering media. We begin by
deriving a solution to an anisotropic diffusion equation in the
spatial Fourier domain. The solution predicts that in turbid me-
dia, the attenuation of the projected sinusoidal patterns depends
on the orientation of the projected patterns with respect to the
subsurface scattering structures. When orientated along the same
direction as the underlying scattering structures, the sinusoidal
patterns attenuate more quickly with increasing frequencies. If
the scattering structures are not parallel or orthogonal to the sur-
face, there is a phase shift of the projected patterns. By rotating
the projection patterns and measuring their attenuation and phase
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shift, we image the spatially varying orientation over a large field
of view, and determine the relative direction of the underlying
light scattering structures. We also introduce a contrast function,
the scattering orientation index (SOI), that describes the degree
of scattering orientation independent of other factors such as the
overall amount of light scattering and absorption, both of which
may also vary spatially. We validate our method using tissue
simulating phantoms with fibrous structures, and with ex vivo
samples of muscle and brain.

2 Theory
The propagation of light in turbid media is well described by
the radiative transport equation (RTE) which appears as:

ŝ · ∇ I (r, ŝ) + (μa + μs)I (r, ŝ)

−μs

∫
d2s ′ P(ŝ, ŝ′)I (r, ŝ′) = S(r, ŝ). (1)

Here I (r, ŝ) is the specific intensity, μa is the absorption coef-
ficient, μs is the scattering coefficient, S(r, ŝ) is the source, ŝ
is a unit vector which specifies the propagation direction, and
P(ŝ, ŝ′) is the phase function. The phase function gives the prob-
ability for a photon traveling in the direction ŝ to be scattered into
the direction ŝ′. In order to model the propagation of multiply
scattered light in turbid media with oriented structures, we use
the anisotropic diffusion approximation to the RTE presented by
Heino et. al.13 In this model, light scattering is taken to have an
isotropic component, which comes from randomly orientated
or spherical structures, and an anisotropic component due to
aligned cylindrical structures. Accordingly, the phase function
appearing in Eq. (1) is the sum of an isotropic, and an anisotropic
term. It appears as:

P(ŝ, ŝ′) = (1 − f )H3(ŝ · ŝ′, g0)

+ f δ(cos θ − cos θ ′)H2(ϕ − ϕ′, g⊥). (2)

Here, H2 and H3 are the two- and three-dimensional Henyey-
Greenstein functions,25 g⊥ and g0 are the two- and three-
dimensional anisotropy factors, and f represents the fraction
of scatterers that are anisotropic. By following the standard P1
approximation to the RTE (Ref. 26) using the phase function
of Eq. (2), one arrives at an anisotropic diffusion equation. For
continuous-wave light the Greens function for the anisotropic
diffusion equation obeys

− ∇ · D(r) · ∇G(r, r′) + cμa(r)G(r, r′) = δ(r − r′), (3)

where c is the speed of light and D is the diffusion coefficient.
In contrast to the isotropic diffusion approximation in which
the diffusion coefficient is a scalar, in the anisotropic case the
diffusion coefficient D is a tensor. If the scattering cylinders are
aligned with one of the coordinate axes, D can be represented as
a diagonal matrix. For arbitrary cylinder directions the matrix
will not be diagonal, but a change of coordinates can bring D
to a diagonal form (i.e., Drot = RDRT where R is a rotation
matrix). For cylinders aligned along the first coordinate axis,
the diffusion tensor is written as

D =
⎛
⎝ B 0 0

0 A 0
0 0 A

⎞
⎠ , (4)

where

A = c/3

μa + μs[1 − f g⊥ − (1 − f )g]
, (5)

and

B = c/3

μa + μs(1 − g)(1 − f )
. (6)

Note that B is what the diffusion coefficient would be in the ab-
sence of the cylindrical scatters (i.e., the isotropic case), whereas
A contains the additional scattering due to the cylinders.

Heino et. al. solved Eq. (3) numerically using finite element
methods. Here we show that for simple geometries and homo-
geneous optical properties, Eq. (3) can be solved analytically
by decomposing the Greens function into plane waves as has
been done for the isotropic diffusion equation.21, 27, 28 In the
semi-infinite and slab geometries, there is translational invari-
ance along the medium’s surface. Let the surface of the diffusive
medium be in the x-y plane, and let z represent the depth from
the surface. Accordingly we can write Greens function as

G(r, r′) =
∫

d2q

(2π)2 g(q, z, z′) exp[iq · (ρ ′ − ρ)], (7)

where ρ = xex + yey, and q is the two-dimensional wave number
specifying the frequency and direction of the plane wave. In
order for the Greens function of Eq. (7) to satisfy the anisotropic
diffusion Eq. (3), g(q, z, z′) must satisfy the one-dimensional
equation[

∂2

∂z2
− 2iβ

∂

∂z
− γ

]
g

(
q, z, z′) = −1

Dzz
δ
(
z − z′) , (8)

where

β = Dxzqx + Dyzqy

Dzz
, (9)

and

γ = Dxx q2
x + Dyyq2

y + 2Dxyqx qy + cμa

Dzz
. (10)

In order to solve for g(q, z, z′) we must specify the boundary
conditions.29 Here we concentrate on the semi-infinite geometry
since we measure the backscattered light in our experiments,
and the thickness of the sample was large compared to other
spatial scales in the problem. Transmission through a slab will be
investigated in future work. Accordingly we have the boundary
conditions

g(q, 0, z′) + �
∂

∂z
g(q, 0, z′) = 0, (11)

and

g(q,∞, z′) < ∞, (12)

where � is the extrapolation length. In addition we require that
the at the point z = z′, the function g(q, z, z′) is continuous, and
its derivative is discontinuous.30 The solution for the plane wave
components of Greens function is then

g(q, z, z′) = exp[iβ(z − z′)]
2Dzz Q

{
exp[−Q|z − z′|]

−1 − �(iβ + Q)

1 − �(iβ − Q)
exp[−Q(z + z′)]

}
, (13)
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Fig. 1 Schematic of the experimental geometry. Gray rectangles represent cylindrical light scattering structures in a turbid medium. Left: top view
of the medium where ϕ is the angle in the x-y plane between the wave number q of the sinusoidal illumination pattern, and the projection of the
cylindrical structures onto the x-y plane. Right: side view of the medium where θ is the angle between the surface and the cylinder direction.

where

Q =
√

γ − β2. (14)

In our SFDI experiments, the sample is illuminated with sinu-
soidal patterns of light intensity. The amplitude and phase shift
of the projected patterns inside and remitted from the sample
are governed by Eq. (13). If the source is located at the surface
(z = 0), then the amplitude and phase of g(q, z, z′) can be written
in a simpler form where the amplitude is

|g (q, z)| = �

Dzz
exp (−Qz) [(1 + �Q)2 + (�β)2]−1/2,

(15)
and the phase shift is

Arg(g) = −βz + tan−1

(
�β

1 + �Q

)
. (16)

The amplitude and phase shift depend on β, Q , the extrap-
olation length �, and the depth z. As the sinusoidal pattern
propagates into the scattering medium it is attenuated expo-
nentially with decay constant Q, and shifted in space linearly
at a rate determined by β. The functions Q and β in turn de-
pend on the scattering and absorption coefficients, the two- and
three-dimensional anisotropy factors, the fraction of anisotropic
scatterers, the frequency of the projected pattern, and the orien-
tation of the anisotropic scatterers in relation to both the surface
and the projected patterns. Let θ be the angle between the sur-
face and the anisotropy direction, and let ϕ be the angle in the
x-y plane between the wave number and the anisotropy direction
(see Fig. 1). Without loss of generality, we can assume the wave
number points in the x direction. Then we have

β = (B − A) cos ϕ cos θ sin θ

A cos2 θ + B sin2 θ
, (17)

where A and B were defined in Eqs. (5) and (6). Notice that if
the scatterers are either parallel or perpendicular to the surface
of the medium, there will be no phase shift. The perpendicular
and parallel cases also yield simple solutions for Q. For the
perpendicular case we have

Q⊥ =
√

Aq2 + cμa

B
, (18)

which is independent of the projection angle ϕ. However, for
the parallel case we have

Q|| =
√

(A sin2 ϕ + B cos2 ϕ)q2 + cμa

A
. (19)

Since A ≤ B, Q|| has its maximum when ϕ = 0. According to
Eq. (15), this means the measured amplitude will be a minimum
when the wave number of the projected sine wave is aligned
with the scattering structures of the medium. This is the cen-
tral theoretical result of this manuscript. It means that when β is
small, one can determine the orientation of the underlying struc-
ture of the medium by simply looking for the angle at which the
projected pattern blurs the most (i.e., its amplitude is smallest).
In Fig. 2, the amplitude |g| is plotted as a function of ϕ for
five different projection frequencies using optical properties: μa

= 0.1 mm− 1, μs = 10 mm− 1, g0 = 0.9, g⊥ = 0.9, f = 0.5,
z = 0, and θ = 0. Notice that as the frequency increases, the
overall amplitude decreases, but the change in amplitude as a
function of projection angle increases. Thus higher frequencies
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Fig. 2 Plot of the calculated amplitude of remitted light as a func-
tion of the angle ϕ between the wave number of the projected sinu-
soidal pattern, and the direction of the cylindrical scattering structures.
The amplitudes due to 5 projection frequencies ranging from 0.1 to
0.5 mm− 1 are shown. The minimum occurs when the wave number
is aligned with the scattering structures. Higher frequencies are more
sensitive to anisotropy, but have smaller average amplitude.
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are more sensitive to scattering orientation, but also give less
overall signal. Since the overall amplitude decreases exponen-
tially with depth, higher frequencies are most beneficial when
interrogating superficial volumes.

3 Methods
3.1 Data Acquisition
We used a custom SFDI device developed in collaboration with
Modulated Imaging, Inc. (Irvine, California). Light from a light
emitting diode centered at 850 nm was coupled via an inte-
grating rod to a digital micromirror device (DMD). The DMD
projected an 8 bit sinusoidal intensity pattern onto the sample
with a spatial frequency of 0.4 mm− 1. The light remitted from
the sample was detected with a 12 bit CCD array. To make a
complete measurement, the sinusoidal pattern was projected se-
rially at three different phases separated by 2π /3 radians, and a
separate image was acquired by the CCD for each phase. Then
the orientation of the sinusoidal pattern was rotated by 5 deg,
and the remitted light was imaged again for each of the three
projection phases. This process was repeated until the projection
pattern was rotated a full 180 deg. Thus a complete measure-
ment consisted of 36 discrete angles, each with 3 phases, for a
total of 108 CCD exposures.

3.2 Data Analysis
For each projection angle, the amplitude of the remitted light at
every detector location was calculated according to

A(x, y) = 21/2

3
{ [I1(x, y) − I2(x, y)]2 + [I1(x, y) − I3(x, y)]2

+ [I2(x, y) − I3(x, y)]2}1/2. (20)

We have discussed this demodulation and the measurement of
the amplitude previously.14 The phase shift of the projected wave
can also be calculated,31 and has been used for tomographic
imaging.21 However, in this preliminary study we only looked
at the amplitude of the remitted light. The tissue simulating
phantoms measured in this manuscript had structures primarily
orientated parallel to the surface, and accordingly little phase
shift was expected [see Eqs. (16) and (17)]. In contrast, our
ex vivo samples may have had structures which were not parallel
to the surface. Such structures would have been difficult to detect
with an amplitude only measurement because they would not
have caused a large change in the measured amplitude as the
projection angle was rotated. After demodulation, the amplitude
was low pass filtered in space using a 4 × 4 pixel median filter,
and filtered in angle using a Gaussian filter with σ = 20 deg. In
order to compensate for systematic errors, the amplitude for each
projection angle was calibrated by dividing it by the amplitude
for that angle measured using an isotropic tissue simulating
phantom.

We then determined the orientation of the light scattering
structures, as well as a SOI. In order to image the orienta-
tion, for each pixel we found the projection angle for which
the measured amplitude was a minimum, and used these values
to create an image of the angular orientation of the anisotropic
light scatterers. As a quantitative measure we defined a con-
trast function, which we referred to as the SOI. It varied from
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Fig. 3 Plots showing the effect on the SOI when various optical prop-
erties are changed. The SOI is most sensitive to changes in the fraction
f of light scattering structures which are anisotropic. Changing the val-
ues of μa and μs has almost no effect on the SOI. Likewise, when the
anisotropy factors g0 and g⊥ are both varied in the same manner, there
is little effect on the SOI. However, when the ratio between g0 and
g⊥changes, the relative amounts of isotropic and anisotropic scattering
changes, leading to a change in the SOI. In the graph above, increasing
g0 while g⊥is fixed leads to an increase in the SOI due to the decrease
in isotropic scattering.

0 to 1 as:

SOI = max
ϕ

{ |g(ϕ)| − |g(ϕ + π/2)|
|g(ϕ)| + |g(ϕ + π/2)|

}
, (21)

where ϕ is the projection angle. This function was calculated
for every pixel on the detector array in order to create an
image.

The SOI is primarily sensitive to the fraction of scatters f
which are anisotropic, and to differences between the two- and
three-dimensional anisotropy factors g0 and g⊥. To demonstrate
this point we calculate the SOI for baseline optical properties of
μa = 0.1 mm− 1, μs = 10 mm− 1, g0 = 0.5, g⊥ = 0 .5, f = 0.5, z
= 0, and θ = 0. We then individually vary the optical properties
from 10% to 200% of baseline values. Results are plotted in
Fig. 3. Changes in the values of μa and μs have almost no effect
on the SOI; whereas changes in the value of f have the largest
effect. Note, the SOI goes to zero when f goes to zero. When
both g0 and g⊥ are changed together, there is little effect on the
SOI. However, when either g0 and g⊥ is changed alone, then
the relative amount of isotropic and anisotropic scattering is
changed, and the SOI is affected. For example, in Fig. (3), g0

is increased while g⊥ is held fixed. This results in a decrease
in isotropic scattering while the anisotropic scattering does not
change. As a result, the SOI increases.

3.3 Sample Preparation
In order to validate our imaging method, we scanned both tissue
simulating phantoms and ex vivo tissue samples using the pro-
cedure outlined above. Tissue simulating phantoms contained
both isotropic regions and anisotropic regions in which the ori-
entation of the anisotropy was varied. The phantoms utilized
a large silicon base containing titanium dioxide for scattering
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Fig. 4 Results from an imaging experiment in which nine fibrous samples were attached to the surface of an isotropic light scattering phantom. The
fibrous samples were rotated so that the orientations of the fibers for each sample were different. (a) A black and white photograph of the entire
sample. Inset is a confocal reflectance image of one of the fibrous samples showing the alignment of the microscopic fibers. (b) Image of the SOI
indicating that the fibrous samples have more anisotropic scattering than the underlying phantom. (c) Thresholded image of the SOI superimposed
over the black and white photograph. (d) Color coded image of the orientation of the light scattering structures in which each color represents a
different angle as denoted by the color wheel to the left. (e) Thresholded image of the structure orientation superimposed over the black and white
photograph. (f) Plots of the measured amplitude |g(ϕ)| as a function of angle for three individual CCD pixels corresponding to the center of three
fibrous samples in the bottom row. (g) Plots of the same CCD pixels in (f) but after the spatial and angular filtering described in the text.

and India ink for absorption. We have used this type of phantom
extensively.32 Sections of a pleated air filter were soaked in water
and then pressed against the silicon base. The fibers composing
the filters clearly had a preferred orientation and filter sections
were rotated so that the phantom contained regions with differ-
ing fiber orientations [see Fig. 4(a)]. In order to evaluate our
ability to image subsurface scattering orientation, thin sheets
of highly scattering (μ′

s = 1.5 mm− 1) silicon phantoms were
pressed over the filter sections. The sheets had thicknesses rang-
ing from 200 to 600 μm. Ex vivo samples consisted of chicken
breast (i.e., muscle) and a rat brain. The chicken breast was cut
into slices (∼5 mm thick) and each slice was positioned on top
of the silicon base with a different orientation. The rat brain was

taken from an 8 week old male Sprague Dawley rat immediately
follow euthanasia using pentobarbital. The brain was carefully
removed and sectioned into two slices along the coronal plane
with a thickness of ∼5 mm.

4 Results
Figure 4 demonstrates the ability of SFDI to image the orienta-
tion of scattering structures at the surface of a turbid medium.
Nine fiber samples from a pleated air filter were fixed at vari-
ous orientations on the surface of an isotropic tissue simulating
phantom and imaged as described above. A black and white pho-
tograph [Fig. 4(a)] shows the position of the fibrous samples.
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The inset is a confocal reflectance image of one of the fibrous
samples in which the orientation of the microscopic fibers is
visible. The SOI image [Fig. 4(b)] clearly indicates that the
scattering from the fiber samples is more anisotropic than that
of the surrounding medium. We then used an arbitrary threshold
to aid in the display of the SOI. In Fig. 4(c), only values of the
SOI above the threshold value indicated on the color bar appear,
and these values are superimposed over the black and white
photograph. Figure 4(d) is a color coded image of the orienta-
tion of the microscopic fibers composed of the fibrous samples.
The color wheel to the left gives the correspondence between
each color and the direction it denotes. Starting from the bottom
left and moving upwards column by column, the orientation of
the fibrous samples is rotated clockwise. This is clearly shown
in the image by the overall color of each fibrous sample. The
areas between the fiber samples also are assigned values. This
occurs because the processing code simply picks the projection
angle for which each pixel has its minimum value. As expected,
in areas where the scattering is isotropic, the assigned values
are random. This motivates using the threshold from the SOI
image to choose which pixels to display in the orientation im-
age. In Fig. 4(e), only pixels in which the contrast was above
its threshold value are shown superimposed over the black and
white image. For these pixels, the direction of the underlying
structures was clearly measured. In Fig. 4(f) we plot the ampli-
tude as a function of the projection angle for three individual
CCD pixels taken from the centers of the fibrous samples in the
bottom row. The plots in Fig. 4(g) are for the same three CCD
pixels after the spatial and angular filtering described in Sec. 3.2.
Each pixel is assigned an angle corresponding to the minimum
of its curve.

A potential advantage of using SFDI to image scattering
orientation, as opposed to methods involving polarization, is
that diffuse optical methods such as SFDI use multiply scat-
tered light. Thus, they are able to probe underneath the tissue
surface at depths where light loses its polarization. In order to
test the ability of SFDI to image subsurface scattering orien-
tation, we placed thin sheets of highly scattering material (μ′

s

= 1.5 mm− 1) over the fibrous samples. In Figs. 5(a) and 5(b),
we show images of SOI and fiber orientation, as the thickness
of the overlying medium is increased from 0 to 600 μm. As the
thickness increases, the SOI becomes smaller, and the image
quality deteriorates. Nonetheless, even at a depth of 600 μm,
the method assigns the correct orientation to much of the im-
age. We quantified the degradation of image quality with depth
by picking a 50 × 50 pixel (11.5 × 11.5 mm) region of in-
terest at the center of each fibrous sample and calculating the
standard deviation of angular values measured for each depth
within the region of interest. We obtained standard deviations
of 3.8, 4.7, 12, and 33 deg for depths of 0, 200, 400, and
600 μm, respectively. We also attempted to image through a
silicon sheet with a thickness of 1 mm. At this depth no scat-
tering orientation was detected. While it may be possible to
penetrate more deeply using lower spatial frequencies and/or
longer wavelengths, it is clear from Fig. 2 that lower frequen-
cies come with the price of decreased sensitivity to the scattering
orientation.

Finally we evaluated the ability of SFDI to image scat-
tering orientation in ex vivo samples of muscle (in this case
chicken breast) and brain. As shown in Fig. 6(a), four slices
of chicken breast were positioned over the tissue simulating
phantom such that the orientation of their muscle fibers was var-
ied in 45 deg increments. The chicken breast clearly exhibited
scattering anisotropy, and the imaged orientation matched our
expectations, albeit with some biological variation. Figure 6(b)
displays the results from imaging coronal slices of the brain of
a rat. White matter composing the corpus callosum is visible in
the black and white image. We expect that the oriented myeli-
nated axons predominately found in white matter, will result in
anisotropic diffusion of diffuse light. The myelinated axons are
already known to cause the anisotropy diffusion of water, and
form the basis for diffusion tensor magnetic resonance imaging
(DT-MRI).33 In the contrast image, areas of high contrast tend to
correspond to white matter. Although we are unable to validate
that the axon directions are correctly determined in this pre-
liminary experiment, the orientation of white matter structures

Fig. 5 Images of the (a) SOI and (b) structure orientation from an experiment in which a layer of highly scattering material was put on top of the
fibrous samples. The top layer was varied in thickness from 0 to 600 μm.
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Fig. 6 Images of ex vivo samples of (a) chicken breast and (b) rat brain. From left to right: a black and white photograph, a SOI image, and a structure
orientation image are shown for each sample. SOI and orientation images are superimposed over the black and white photograph after a threshold
was applied.

found with SFDI could be compared with DT-MRI in future
work. These ex vivo experiments demonstrate the potential for
using SFDI as a tool to image scattering orientation in biological
tissues.

5 Discussion
In this work we use a model of light propagation based on the dif-
fusion approximation to the RTE. This approximation is known
to be most accurate when 1. the reduced scattering coefficient
is much larger than the absorption coefficient, 2. the distance
between sources and detectors is much greater than one over the
reduced scattering coefficient, and 3. the volume of interest is
far from boundaries compared to one over the reduced scatter-
ing coefficient. In our experiment, conditions 2 and 3 are not
met since the spatially distributed source is co-localized with
all of the detectors, and we are only sensitive to anisotropy
within ∼1 mm from the surface. Nonetheless, we (and others)
have shown that the diffuse approximation can be used to ac-
curately predict the diffuse reflectance from isotropic media.34

However, we have also shown a slight increase in accuracy
in our SFDI measurements of isotropic media when modeling
light transport with Monte Carlo solutions to the RTE as op-
posed to using the diffusion approximation.14 We do expect the
same qualitative results for SFDI using the anisotropic diffu-
sion approximation as we would obtain by solving the full RTE.
However, the extent to which the diffusion approximation can be
used to model light propagation in anisotropic turbid media has
been controversial,9, 35 and will be the subject of further SFDI
research.

In this manuscript, we did not fit for the exact optical prop-
erties of the medium. Instead we determined the orientation and
degree of anisotropy by finding the angle corresponding to the
minimum measured amplitude, and defining a contrast function.
Indeed, the anisotropic diffusion model contains many free pa-

rameters, and we have yet to determine to what extent we can
solve for them using SFDI measurements.

Finally, it is important to point out that although we are us-
ing SFDI to image heterogeneous media, our solution to the
anisotropic diffusion equation assumed the media was homoge-
neous. We analyzed the data from each CCD pixel independently
assuming that the optical properties of the sample were suffi-
ciently homogeneous such that the optical properties of neigh-
boring locations did not affect the properties assigned to a given
location. This was sufficient for demonstrating our sensitivity
to scattering orientation, and for determining the orientation
of the light scattering structures in two-dimensions. However,
this approach has limitations. For example, the results of Fig. 5
clearly show that the measured contrast is determined not only
by the properties of the fiber sample, but also by its depth.
Thus, more sophisticated approaches involving layered models
and/or tomographic imaging may be useful to facilitate quanti-
tative measurements of scattering orientation in heterogeneous
tissues. We have implemented both layered models19 and tomo-
graphic imaging21 for SFDI in isotropic media, and we expect
to be able to extend these approaches to anisotropic tissues.

6 Conclusion
We used SFDI to image the orientation of light scattering struc-
tures in highly scattering media. This was accomplished by
rotating the orientation of sinusoidal patterns of light intensity
projected on the sample, and measuring the attenuation in am-
plitude of the patterns as a function of the projection angle.
We derived an analytic solution in the Fourier domain to the
anisotropic diffusion equation, and defined a contrast function,
the scattering orientation index, which gives a measure of the
degree to which multiple light scattering has a preferred direc-
tion. We validated our approach by imaging tissue simulating
phantoms as well as ex vivo samples of muscle and brain. We
were able to distinguish between regions with isotropic and
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directional scattering, image the orientation of scattering struc-
tures embedded at a depth of 600 μm in highly scattering
isotropic media (μ′

s = 1.5 mm− 1), and determine the scattering
orientation within a standard deviation of 3.8 deg using indi-
vidual CCD pixels. This technique may aid in the diagnosis of
tissues such as skin, muscle, bone, and brain; in which the loss
of orientated structure may be associated with disease.
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