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Abstract

Significance: Time domain diffuse correlation spectroscopy (TD-DCS) can offer increased sen-
sitivity to cerebral hemodynamics and reduced contamination from extracerebral layers by dif-
ferentiating photons based on their travel time in tissue. We have developed rigorous simulation
and evaluation procedures to determine the optimal time gate parameters for monitoring cerebral
perfusion considering instrumentation characteristics and realistic measurement noise.

Aim:We simulate TD-DCS cerebral perfusion monitoring performance for different instrument
response functions (IRFs) in the presence of realistic experimental noise and evaluate metrics
of sensitivity to brain blood flow, signal-to-noise ratio (SNR), and ability to reject the influence
of extracerebral blood flow across a variety of time gates to determine optimal operating
parameters.

Approach: Light propagation was modeled on an MRI-derived human head geometry using
Monte Carlo simulations for 765- and 1064-nm excitation wavelengths. We use a virtual probe
with a source–detector separation of 1 cm placed in the pre-frontal region. Performance metrics
described above were evaluated to determine optimal time gate(s) for different IRFs. Validation
of simulation noise estimates was done with experiments conducted on an intralipid-based liquid
phantom.

Results: We find that TD-DCS performance strongly depends on the system IRF. Among
Gaussian pulse shapes, ∼300 ps pulse length appears to offer the best performance, at wide
gates (500 ps and larger) with start times 400 and 600 ps after the peak of the TPSF at 765
and 1064 nm, respectively, for a 1-s integration time at photon detection rates seen experimen-
tally (600 kcps at 765 nm and 4 Mcps at 1064 nm).

Conclusions: Our work shows that optimal time gates satisfy competing requirements for suf-
ficient sensitivity and sufficient SNR. The achievable performance is further impacted by system
IRF with ∼300 ps quasi-Gaussian pulse obtained using electro-optic laser shaping providing the
best results.
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1 Introduction

The brain of a normal human adult has a high energy demand, receiving 10% to 16% of cardiac
output under normal cerebral circulation and cardiac function, while weighing only around 2%
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of the total body mass.1 This demand is met through the delivery of oxygen and glucose by
means of blood perfusion into the brain. Cerebral autoregulation is a mechanism that assists
in maintaining a relatively stable cerebral blood flow (CBF) over a wide range of cerebral per-
fusion pressures. However, this protective mechanism becomes impaired under abnormal con-
ditions such as cerebral ischemia, traumatic brain injury, and subarachnoid haemorrhage.2,3

Impairment of cerebral autoregulation under any circumstances may lead to both hypoperfusion
(inadequate CBF) and hyperperfusion (excess CBF) that can result in damage to the patient’s
brain.4 Non-invasive monitoring of CBF at the bedside is needed for CBF management and
assessment of CA with the goal of maintaining brain health under these circumstances.5

However, the traditional CBF measurement techniques, such as MRI-ASL6 and XeCT,7,8 are
not suitable for bedside monitoring. Transcranial Doppler ultrasound (TCD),9–11 which is com-
pact enough for the bedside, is not widely used because of its high operator dependency due to
strict requirements for stable positioning and alignment,12,13 and because some patients have
inadequate transtemporal acoustic windows.14–16 Also, TCD can only measure blood flow from
large arteries, such as the middle cerebral artery, and not perfusion in micro-vasculature, where
the oxygen and nutrient exchange actually occurs. Cerebral oximeters, based on near-infrared
spectroscopy, offer a convenient solution for measuring relative cerebral oxygen saturation
(rSO2) as a surrogate for CBF17–20 with the use of miniature optical probes. However, the use
of rSO2 as surrogate for CBF is limited to certain assumptions21 such as constant hematocrit,
arterial saturation, and cerebral oxygen metabolism that may not be valid during pathological
and surgical conditions.

Diffuse correlation spectroscopy (DCS),22–25 a near-infrared technique that can overcome
most of these challenges, is gaining popularity in the neuromonitoring field. A typical DCS
setup to measure CBF employs a long coherence-length laser to illuminate a portion of the sub-
ject’s forehead. This leads to the formation of a speckle pattern as multiple-scattered photons,
after traversing through different trajectories within the illuminated volume of the head, interfere
at the surface. The speckle pattern changes due to the movement of scatterers in the illuminated
volume. Usually, the fluctuating intensities of a single speckle are recorded using fast photo-
detectors over time, and the temporal autocorrelation function is computed. The decay rate of the
obtained temporal autocorrelation function is proportional to scatterer motion within the illumi-
nated volume of the subject’s head, which is mainly dominated by the movement of red blood
cells (RBCs) within the micro-vasculature. This paves the way to assess perfusion in the probed
tissues by means of a DCS-derived blood flow index (BFi).24

Since non-invasive operation requires the injection and detection of light from the surface of
the subject’s head, the recovered BFi values from DCS measurements are susceptible to con-
tamination by hemodynamic processes in the extracerebral layers,26,27 e.g., scalp and skull. To
maximize the sensitivity of CBF in the measured BFi, large source–detector (S–D) separations
(∼30 mm) are used in traditional continuous wave DCS measurements, as photons with longer
path lengths can be detected in these separations. An inherent drawback with this approach is
detecting fewer photons at large S–D separations that detrimentally affects the signal-to-noise
ratio (SNR) of the measured temporal autocorrelation function. A time-resolved variant of DCS
that allows us to select photons with longer path lengths even at shorter separations (∼10 mm),
where detected photons are abundant, has been recently proposed under the name time domain
DCS28–30 (TD-DCS). TD-DCS enables the selection of photons based on their time-of-flight
(ToF). Ideally, TD-DCS allows one to separate out the photons that have traveled longer dis-
tances from the rest even at shorter S–D separations. Longer traveling photons are most likely to
travel into the deeper tissues than the shorter traveling counterparts; hence, an exclusive con-
sideration of the former while obtaining the BFi can yield higher sensitivity to CBF.

ATD-DCS device uses a coherent pulsed laser as a source and high-resolution time tagging
system on the detector side to record the ToF and absolute time of arrival of photons simulta-
neously.28,30 Ultimately, the autocorrelation function is computed using the absolute arrival times
for the photons whose ToF falls within a desired range of values. This ToF range determines the
associated depth of the hemodynamic process that influences the obtained BFi the most. To
achieve the optimal performance from this time-domain strategy for CBF monitoring, identifi-
cation of the best ToF range(s), which will henceforth be referred as the time gate(s), is crucial.
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The primary objective of this work is to present a framework for the rigorous simulation and
evaluation of optimal time gating parameters for monitoring cerebral perfusion while consid-
ering instrumentation characteristics and realistic measurement noise. Simulation studies offer
convenient means to compare the performance of a wide variety of system instrument response
functions (IRF) and time gates.31,32 In this work, we have modeled the propagation of light
through a realistic head geometry using Monte Carlo simulations. We considered a measurement
geometry typically used for TD-DCS neuromonitoring with a 1-cm S–D separation virtual probe
in pre-frontal region.29,33,34 Then, the detected photons have been assigned to different time gates
based on their ToF and the autocorrelation function has been obtained for each of these gates
using the photon information. Here, we have also taken in account the error in the ToF that is
introduced due to the non-idealities or real IRFs modeled from existing commercially available
hardware. We demonstrate an appreciable difference in CBF sensitivities with various combi-
nations of sources and detectors, and conclude that incorporation of the real IRF while estimating
the CBF sensitivity for TD-DCS is important, a factor that has not explored in detail in previous
studies.31,35 To best link our optimization procedure with actual outcomes expected in practice,
we model DCS measurement statistical noise based on realistic experimental conditions, take
into account the effects of the finite coherence length of pulsed lasers (also not considered in
previous works), and define a combined metric that accounts for the intrinsic CBF sensitivity as
well as both the SNR of the measurement and degree of susceptibility to superficial cross-talk.
The accuracy of the predicted TD-DCS BFi SNR was further verified against liquid phantom
measurements. Based on this simulation approach and combined performance metric, we define
the optimal operating conditions for TD-DCS at 765 and 1064 nm taking into account the actual
source and detector performance characteristics with the assumed goal of maximizing the ability
to detect changes in CBF in the presence of experimental noise and extracerebral interference.

2 Methods

2.1 Forward Model

2.1.1 Theory

A typical DCS measurement involves computing the normalized intensity autocorrelation func-
tion (g2) from the time course of scattered light intensity. The recorded g2 carries information
regarding the speed of the movement of RBC through microvasculature in the illuminated region
of the tissue, quantified as BFi.24 To simulate g2 curves for various experimental conditions, we
used detected photon information taken from modeling light propagation through the medium
using Monte Carlo, as described next.

In the present work, we have employed the Monte Carlo eXtreme (MCX) package, a parallel
Monte Carlo algorithm, accelerated by graphics processing units that can model photon propa-
gation in arbitrary 3D media.36 In this algorithm, a given number of simulation threads are
launched, where each thread simulates a sequence of photon migration.36 Here, photons packets
are launched from a source and propagate according to the scattering length (l�) and scattering
anisotropy (g) of the medium before potentially getting detected at discrete detector positions.
For each detected photon packet, the total path length L and total momentum transfer Y in each
tissue type, accumulated over all scattering events, are recorded. The momentum transfer for a

single scattering event is given by ~q ¼ ~kout − ~kin, where ~kout and ~kin are the photon packet wave
vectors that are scattered from the scattering center and incident on the scattering center, respec-
tively. The total dimensionless momentum transfer Y ¼ P

q2∕2k20 is recorded, where the sum is
over all scattering events and k0 is the wavenumber of incident light. This recorded photon
packet specific information has been used to compute the temporal field autocorrelation function
G1ðτÞ for each layer using:37,38

EQ-TARGET;temp:intralink-;e001;116;113G1ðτÞ ¼
1

Np

XNp

n¼1

exp

�
−
1

3
k20

XNt

i¼1

Yn;ihΔr2ðτÞii
�
exp

�
−
XNt

i¼1

μa;iLn;i

�
; (1)
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where Np is the number of photon packets detected, Nt is the number of tissue layers, Yn;i is the
total momentum transfer for photon packet n in layer i, Ln;i is the total path length of photon
packet n in layer i, μa;i is the absorption coefficient in layer i, τ is the delay time, and hΔr2ðτÞii is
the mean square displacement of the scattering particles in layer i, which is given as
hΔr2ðτÞii ¼ 6Dτ, where D is the effective diffusion coefficient, also referred to in the field
as the blood flow index or BFi. The normalized temporal field autocorrelation function g1
(τ) is obtained as g1ðτÞ ¼ G1ðτÞ∕G1ðτ ¼ 0Þ and finally, g2 is obtained using Siegert relation
g2ðτÞ ¼ 1þ βjg1ðτÞj2, where β is the coherence factor.

2.1.2 Monte Carlo simulation scenarios

As mentioned earlier, we used MCX to implement the modeling of photon propagation in tissue.
In our simulations, we launched 6 billion photon packets into our 3D segmented human head
geometry. The segmented volume, whose cross-section has been shown in Fig. 1(a), was
obtained from an MRI structural scan of a human subject. The resolution of the geometry was
1 mm × 1 mm × 1 mm. We have categorized different parts of the head into five layers: (i) skin
(Sn), (ii) skull (Sl), (iii) cerebral spinal fluid (CSF), (iv) gray matter (GM), and (v) white matter
(WM). To simulate a more challenging condition where the subject has a thicker extracerebral
layer, a new geometry was created wherein the thickness of the Sn and Sl layers of the segmented
head was incremented outward along the radial direction using 3D image dilation. The thickness
of the combined Sn and Sl regions for the new head geometry was approximately 3 mm more
than the thickness of combined Sn and Sl regions of the original head model that was used in
most of our simulations. The radial distance between the surface of the forehead and the cortex
was around 14 mm for the original head model and for the modified head geometry, it was
approximately 17 mm.

Given diffusive propagation of light in tissue, we have considered a point source in our sim-
ulations. The detector is circular with a diameter of 1 mm. The probe consists of an arrangement
of a source and a detector with the distance between the source and the detectors maintained at
10 mm. After wrapping the probe around the segmented head, the new straight-line distance
between the source and the detector was 9.5 mm. To reflect the advantage of the time-domain
technique over continuous-wave, we do not consider S–D separations longer than 9.5 mm; this
also allows for higher photon counts for a given path length distribution by avoiding the geo-
metrical 1∕r loss at larger separations. The final arrangement of the probe around the segmented
head has been shown in Fig. 1(b). We placed the virtual probe in the prefrontal region, somewhat
laterally where bone thickness is generally lower. Our wavelengths of interest for illuminating
the human head were 765 and 1064 nm, reflecting currently available choices in pulsed laser
sources suitable for TD-DCS.30,34 The optical properties of the five segments of our head model
have been reported in Table 1. The reduced scattering coefficients (μ 0

s) of all the segments other
than CSF in the table have been obtained from Farina et al.39 To determine the μ 0

s of CSF, we

Fig. 1 (a) Human head cross section fromMRI structural scan, showing different parts of the head.
The Sn, Sl, and CSF have been considered extracerebral layers, with GM and WM combined as
brain. The dynamics in the Sl and CSF region were considered to be zero. (b) The position of the
source and detector locations on the forehead, away from the midline of the brain.
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have assumed a power law for dependence of μ 0
s on wavelength (λ) as μ 0

sðλÞ ¼ 0.0016 × λ−0.44.
We obtain the 0.0016 multiplicative constant by assuming μ 0

s to be 0.1 cm−1 at 800-nm exci-
tation wavelength as reported in Okada et al.40 For obtaining the absorption coefficients (μa) in
Table 1, we have collected the values of the molar extinction coefficients from Refs. 41–45 and
have assumed the [HbO] to be 20 μM, [HbR] to be 10 μM, and water content to be 60% for skin
layer; whereas for the gray and white matter regions, as [HbO] of 50 μM, [HbR] of 30 μM, and
75% of water content was used. The absorption of the skull layer (Sl) was assumed to be 1.22
times46,47 of skin layer (Sn). The μa of the CSF was assumed to be the same as water. For the MC
simulations, we computed μs assuming g ¼ 0.9.47–50 The refractive index for all the layers was
assumed to be 1.4.50

2.1.3 Incorporation of IRF

The photon path lengths sampled from the Monte Carlo simulations correspond to pulse exci-
tation with an infinitely narrow width [a Dirac delta function (δ)-pulse]. To incorporate the effect
of the IRF, the tissue temporal point spread function (tissue-TPSF) obtained from these path
lengths can be convolved with the system IRF for a given pair of source and detector hardware
(S–D pair) to generate the overall temporal point spread function (overall-TPSF).51 To do this,
we used simulated Gaussian IRFs, or obtained the IRF experimentally from the histogram of the
elapsed time between laser pulses and reported photon detections when the source and detector
fibers directly faced each other. The histogram was then normalized to obtain the corresponding
probability density function (PDF). Finally, we sampled from this PDF to add jitter to the tissue
photon packet ToF from the Monte Carlo simulation and generated apparent ToFs for each pho-
ton packet. The sampling of the random variables from the PDF has been done through the
inverse transform sampling technique.52 Thus, for every detected photon packet, we have two
ToFs: first, the tissue ToF, representing the ToF of the photon packet within the simulated tissue,
and second, the apparent ToF that accounts for the extra time lag due to a non-ideal IRF. We use
the apparent ToFs to allocate the detected photon packets to individual time gates, and then use
the tissue path lengths of these allocated photon packets (along with their momentum transfer
histories) to obtain the G1 for the time gates using Eq. (1). To visualize the efficacy of photon
selection, we evaluate the distribution of the detected photon fluence versus the photon path length
in tissue. The time-dependent photon fluence was computed for every time gate to obtain the
detected path length distribution function PðLÞ across the time gates (note this is different from
the photon packet path length distribution as longer path lengths are attenuated more, thus shorter
path lengths contribute disproportionately to the signal). The fluence Φðt; tþ ΔtÞ accumulated
within a time interval t to tþ Δt of a time gate is computed with the following equation:53

EQ-TARGET;temp:intralink-;e002;116;139Φðt; tþ ΔtÞ ¼ 1

Δt

XNðΔtÞ

i¼1

YNtissue types

j¼1

expð−μa;jLi;jÞ; (2)

whereNðΔtÞ is the number of photon packets detected within the interval,Ntissue types is the number
of tissue types, and expð−μa;jLi;jÞ accounts for the effects of absorption in each of the tissue types

Table 1 Optical properties for different segments of the head geometry.

Tissue
type

μ 0
s in cm−1

(765 nm)
μ 0
s in cm−1

(1064 nm)
μa in cm−1

(765 nm)
μa in cm−1

(1064 nm)

Sn 9.68 8.37 0.076 0.105

Sl 9.68 8.37 0.093 0.128

CSF 0.1 0.09 0.025 0.122

WM 9.68 8.37 0.188 0.173

GM 9.68 8.37 0.188 0.173
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with Lij being the path length of photon packet i through the tissue type j. P(ToF) is obtained by
normalizing the time-dependent photon fluenceΦðtÞ by dividing it by the sum of the accumulated
photon fluence in all the discrete time intervals. Finally, the path length distribution function PðLÞ
was obtained by multiplying the photon propagation time by the speed of light in the medium.

Table 2 lists the names of the lasers and photodetectors that were used to obtain various
experimentally derived IRFs using time-correlated single photon counting technique. The details
of IRF measurement can be found in Tamborini et al.30 Apart from the experimental IRFs, we
have considered Gaussian IRFs of various full-width-at-half-maximums (FWHMs) ranging from
200 to 450 ps. Based on the performance metrics across different time gates (shown in the
Supplementary Material) for the Gaussian IRFs, we found the Gaussian IRF with FWHM of
300 ps offers the optimal balance between CBF sensitivity, SNR, and ability to reject influence
of blood flow in the extracerebral layer across both wavelengths. Hence in this paper, we have
considered a Gaussian shaped IRF with FWHM of 300 ps as the “ideal” IRF for in-vivo mea-
surements of CBF using TD-DCS. To achieve a Gaussian IRF of FWHM of 300 ps with our
lasers and detectors, we have shaped the laser pulse using an electro-optic modulator (EOM).
Table 2 shows the list of all the IRFs that we have considered in this paper.

2.1.4 Defining time gates for TD-DCS simulations

To identify the time gates for optimal performance of the TD-DCS technique, we have consid-
ered a wide range of feasible time gates. Each time gate is characterized by two independent
parameters: gate start time and gate width. Photons were binned in time gates according to their
apparent ToF. Once the photons are selected for each gate, their tissue path length and momen-
tum transfer histories were used for the computation of g1 (and β) for every time gate, and their
path length weighted contributions were used to estimate the expected photon count for each
time gate. Throughout our simulations, the start time of a gate was always defined with respect to
the occurrence of the peak of the TPSF, consistent with the time gate definition used in our
previous TD-DCS publication.30 A table of IRF to TPSF peak delays is provided in the
Supplementary Material. Figure 2 illustrates the process of allocating detected photons into time
gates.

Table 2 The laser sources and detectors used for various IRFs at both the wavelengths.

Wavelength
(nm) Source Detector

FWHM
(ps) Abbreviation

765 Picoquant VisIR-765-HP “STED”
laser (VisIR)

MPD-fast gated detector
(MPD-FG)

520 VisIR-FG

765 Picoquant’s VisIR-765-HP “STED”
laser (VisIR)

MPD-red enhanced (MPD-RE) 530 VisIR-RE

765 Picoquant’s VisIR-765-HP “STED”
laser (VisIR) with added EOM for
shaping

MPD-fast gated detector
(MPD-FG)

300 VisIR-FG
with EOM

765 Picoquant’s VisIR-765-HP “STED”
laser (VisIR) with added EOM for
shaping

MPD-red enhanced (MPD-RE) 300 VisIR-RE
with EOM

1064 PicoQuant’s CPDL-S-F/FA
1064-nm laser (CPDL 1064 laser)

Quantum Opus’ Opus One™
multi-channel near-infrared
photon detector system,
superconducting NW

510 1064-NW

1064 PicoQuant’s CPDL-S-F/FA
1064-nm laser (CPDL 1064 laser)
with added EOM for shaping

Quantum Opus’ Opus One™
multi-channel near-infrared
photon detector system,
superconducting NW

300 1064-NW
with EOM
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2.1.5 Computation of coherence factor (β)

The coherence factor (β) for each time gate was computed using the relationship for obtaining g2
for a limited coherence light source proposed by Bellini et al.,54

EQ-TARGET;temp:intralink-;e003;116;476g2ðτÞ ¼ 1þ
Z

∞

0

dL
Z

∞

0

dL 0PðLÞPðL 0Þg1ðL; τÞg1ðL 0; τÞe−2½ðL−L 0Þ∕Lc�2 ; (3)

where L represents the path lengths of the detected photons, PðLÞ is the path length distribution
function, g1ðL; τÞ is the path length-dependent field autocorrelation function, and Lc is the
coherence length of the incident light from the laser. To obtain β, we reduce Eq. (3) into the
following expression:

EQ-TARGET;temp:intralink-;e004;116;385βðtime gateÞ ¼ g2ðτ ¼ 0Þ − 1 ¼
Z

∞

0

dL
Z

∞

0

dL 0Ptime gateðLÞPtime gateðL 0Þe−2½ðL−L 0Þ∕Lc�2 : (4)

The path length distribution PðLÞ was computed for each gate from the individual photon
histories. PðLÞ can also explain the effect of IRF on BFi sensitivity to CBF and β. This will be
discussed further in Sec. 3.2. We used a Michelson interferometer to determine the laser coher-
ence length. Based on these measurements, we use a laser coherence length Lc of 5 cm for
simulations using an unshaped laser pulse IRFs and 4 cm for simulations with an EOM-shaped
pulse IRFs. For Gaussian IRFs, the FWHM’s of the IRF and an assumed 90-ps FWHMGaussian
detector response are used to calculate the laser pulse width, which is then in turn used to directly
compute Lc. For a transform-limited Gaussian pulse, the bandwidth of the pulse is given by BW
ðΔνÞ ¼ 0.441∕FWHM. Finally, the Lc for the Gaussian IRF was determined using the following
relation: Lc ¼ c∕π � Δν, where c is the speed of light in tissue.

2.1.6 Addition of noise

To simulate a realistic TD-DCS measurement, we added zero-mean Gaussian noise to the
obtained g2 based on a statistical noise model for correlation measurements55,56 giving the stan-
dard deviation of the noise [σðτÞ� at each time delay τ,

EQ-TARGET;temp:intralink-;e005;116;147

σðτÞ

¼
ffiffiffiffi
T
t

r �
β2
ð1þe−2ΓTÞð1þe−2ΓτÞþ2mð1−e−2ΓTÞe−2Γτ

ð1−e−2ΓTÞ þ2hni−1βð1þe−2ΓτÞþhni−2ð1þβe−ΓτÞ
�
1∕2

;

(5)

Fig. 2 Photon allocation in time gates: showing IRF (blue) of an S–D pair with corresponding over-
all TPSF (orange) after convolution with IRF. The photons that fall in the transparent yellow area of
the convolved TPSF are allocated to the time gate with start time of 200 ps and gate width of
400 ps. The ratio of this yellow area to the area under the convolved TPSF (orange) was used
to determine the photon counts per second for the time gate, as mentioned in Sec. 2.1.6.
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where t is the averaging time, T is the bin width, Γ is the exponential decay rate of g1ðτÞ, hni is
the average number of photons within the bin width T (also given as hni ¼ IT, where I is the
detected photon count rate), m is the bin index, and β is the coherence factor.

The coherence factor, β, was obtained as described in Sec. 2.1.5. The detected photon counts
I for each time gate have been obtained by taking the area under the TPSF curve within a given
time gate. As per the ANSI standard limits for safe skin exposure (ANSI Z136.1), the maximum
permissible exposure of skin by optical illumination at 765 and 1064 nm are 0.27 and
1.07 W∕cm2, respectively. Following the standard, for an illumination spot larger than 1-
mm diameter, a 3.5-mm aperture can be applied, translating the maximum permissible power
to be 26 mWat 765 nm and 103 mWat 1064 nm. Based on these power limits, we typically inject
100 mW of laser power at 75-MHz laser repetition rate into the forehead of human subjects. At
this input power, we are typically able to detect 4 million photons per second at 10-mm S–D
separation. Similarly, for 765 nm, after inputting 26 mW of power to human head, we are typ-
ically able to collect 600,000 photons per second at 10-mm S–D separation with a distributed
source arrangement where six source fibers were arranged in a 1-cm radius circle (at least 1 cm
apart) around the detector location when using the MPD FG detector (this was done to com-
pensate for the low photon detection efficiency of this detector). Therefore, we have used these
count rates in our simulations. Specifically, we have assumed the total area under the TPSF to
correspond to these photon counts.

2.2 Inverse Problem

To fit the g2ðτÞs for various time gates, obtained during the forward simulations, we modeled the
light propagation in a homogeneous medium (as described in Secs. 2.1.3 and 2.1.4). The optical
properties of the homogeneous medium, a semi-infinite slab in this case, were determined by
fitting the obtained TPSF (from the forward model) to an equation describing the time-resolved
solution of the diffusion equation. 57 Finally, the BFis and βs were obtained for each time gate
after fitting the g2ðτÞs (obtained during the forward simulation) to the coupled equations: Eq. (1)
and the Siegert relation g2ðτÞ ¼ 1þ βjg1ðτÞj2. Note that the path lengths and the momentum
transfers used in Eq. (1) during the fitting were obtained from Monte Carlo simulation of photon
propagation in the homogeneous medium.

The non-linear optimization was accomplished using the “lsqnonlin” subroutine in Matlab®

that is based on the Levenberg Marquadt algorithm. While fitting for both the noisy and noiseless
g2s, a set of two initial guesses each for BFi and β (four combinations) have been used. Finally,
out of the recovered BFi and β values, the pair with least Euclidean norm of the residuals was
chosen.

2.3 Computation of Intrinsic Sensitivity

To distinguish the blood flow in the brain and in the extracerebral layers, we have considered the
hemodynamic processes in the skin (Sn), skull (Sl), and cerebral spinal fluid (CSF) as the extra-
CBF and the blood flow in the gray matter and white matter as brain blood flow or CBF. Next, we
simulated two different hemodynamic conditions to determine the sensitivities of the recovered
BFi to CBF at various time gates. The first is the baseline condition, where the effective diffusion
coefficient D is maintained at 1 × 10−6 mm2∕s in the Sn and 6 × 10−6 mm2∕s in the brain.
The second is the perturbed condition, where the D value in the brain has been incremented
by 20% to 7.2 × 10−6 mm2∕s, but the D value for the Sn layer remains unchanged. We assumed
zero dynamics in the Sl26,58 and CSF layer. Using these dynamics within the segmented head, we
computed the g2 for various time gates for both the baseline and the perturbed conditions, as
explained in Sec. 2.1.

Once the g2s are obtained for various time gates for the baseline and perturbed conditions,
they are fitted to recover BFi and β. Finally, the intrinsic sensitivity is computed using Eq. (6):

EQ-TARGET;temp:intralink-;e006;116;107Intrinsic sensitivity of a time gate ð%Þ ¼ ðBFiperturbed_brain∕BFibaselineÞ − 1

ðCBFperturbed∕CBFbaselineÞ − 1
× 100; (6)
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where BFiperturbed_brain and BFibaseline are the recovered BFis of the time gate during the perturbed
and baseline conditions, respectively; CBFperturbed and CBFbaseline are the D values in the brain
during the perturbed and baseline conditions, respectively.

Another important parameter for evaluating the efficacy of a time gate is the ability to reject
the influence in measured BFi due to hemodynamic processes in the extra-cerebral layers. To this
end, we had adopted a similar approach as intrinsic sensitivity computation. Here, we have the
same pair ofD values for the brain and Sn layer during the baseline condition as above; however,
for the perturbed condition, we have incremented the blood flow of Sn layer by 20% to
1.2 × 10−6 mm2∕s, keeping the D value in the brain the same as baseline. With these dynamics,
we compute the g2s across various time gates for both the baseline and perturbed conditions as
before. Then we fit the obtained g2s for the set of BFis for both the conditions and compute
superficial sensitivity using the following equation:

EQ-TARGET;temp:intralink-;e007;116;589Superficial sensitivity of a time gate ¼ ðBFiperturbed_superficial∕BFibaselineÞ − 1

ðsuperficial_Dperturbed∕superficial_DbaselineÞ − 1
× 100;

(7)

where BFiperturbed_superficial and BFibaseline are the BFis that are recovered during perturbed and
baseline conditions, respectively; superficial_Dperturbed and superficial_Dbaseline are the D values
of the Sn layer during the perturbed and baseline conditions, respectively, while evaluating
superficial sensitivity. The recovery of BFi and β for the time gates has been discussed in
Sec. 2.2. Both the intrinsic and superficial sensitivity were obtained with noiseless g2.

2.4 Computation of Contrast-to-Noise Ratio and Figure-of-Merit

The intensity autocorrelation functions, g2, computed for every time gate had random noise
added based on the noise model described in Sec. 2.1.6. We have generated a total of 120
g2s, each with an integration time of 1 s, and added a corresponding noise realization to each
to simulate a 120-s long measurement. These noisy g2swere then fitted to retrieve a time series of
BFis and βs as explained in Sec. 2.2. To determine the contrast-to-noise ratio (CNR) for a time
gate, we divide the change in recovered BFi from the 20% change in brain blood flow by the
standard deviation of the recovered BFis over the 120 time points [Eq. (8)]. The 20% perturba-
tion was chosen to reflect a physiologically significant blood flow change. In our simulations, we
have accounted for physiological noise by setting the coefficient of variation (CoV, the ratio of
standard deviation to the mean) of the BFi time series to be at least 0.1 at all gates, as observed by
our group during measurements on human subjects.

EQ-TARGET;temp:intralink-;e008;116;298CNRð time gateÞ ¼ BFiperturbed_brain − BFibaseline

standard deviation of 120 recoveredBFi
: (8)

To take into account the impact of extra-cerebral layer cross-talk, we further defined a figure-of-
merit (FoM) that takes into account a time gate’s CNR [from Eq. (8)] as well as its ability to
reject the influence of changes in the blood flow of the extra-cerebral layer [from Eq. (7)]:

EQ-TARGET;temp:intralink-;e009;116;220FoM ðtime gateÞ ¼ CNR ðtime gateÞ
Superficial sensitivity ðtime gateÞ∕100 : (9)

2.5 Experimental Verification of Predicted Noise Levels

To experimentally validate the presented Monte Carlo analysis, we used a TD-DCS system oper-
ating at 1064 nm. The system consisted of a PicoQuant pulsed laser (CPDL 1064 laser, ∼510 ps

FWHM) at repetition rate of 75 MHz that was amplified using a Yb-doped fiber amplifier and
used to illuminate an intralipid-based phantom (μa ¼ 0.14 cm−1, μs 0 ¼ 4.1 cm−1) via multi-
mode fiber (62.5∕125 μm). The optical power was set to collect 3M counts per second at
10-mm S–D distance. The backscattered photons were collected via single-mode fibers and
coupled into the nanowire (NW) detector (Quantum Opus, Opus One) with a photon detection
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efficiency >80%, dark count <100 counts∕s, and jitter <100 ps. The photons were collected via
two channels, one for the IRF and one for the TPSF. The NW readout electronics module is
connected to a custom-made set of time-to-digital converter cards (10-ps resolution, 40-ps
FWHM jitter) and to a 150-MHz clock rate time-tagger as previously reported for our
TD-DCS implementation.30 The schematic of our experimental setup is shown in Fig. 3.
This corresponds to the 1064-NW entry in Table 2.

3 Results

3.1 IRFs and the Corresponding TPSFs

Figures 4 and 5 show the measured and synthetic IRFs for 765- and 1064-nm simulations,
respectively, along with the corresponding convolved overall-TPSFs. The IRFs that were
obtained from combinations of commercially available sources and detectors are shown in
Figs. 4(b)–4(e), 5(b), and 5(c). The RE detector was considered here because it has substantially
higher (6 to 7×) photon detection efficiency at 765 nm compared the FG detector. However, as
can be seen in Figs. 4(d) and 4(e), the RE detector exhibits a long diffusion tail, substantially

Fig. 3 The optical TD configuration. The amplified seed laser illuminated the phantom, one NW
channel collects the TPSF and the second one collects the IRF. The readout data are transferred
to the TDC cards and are analyzed via a processing unit.

Fig. 4 Showing all the IRFs [all measured except (a)] at 765 nm and the corresponding TPSFs:
(a) Gaussian IRF, (b) VisIR-FG with EOM, (c) VisIR-FG, (d) VisIR-RE with EOM, and (e) VisIR-RE.
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broadening the IRF. As explained in Sec. 2, to achieve narrower IRFs for attaining better sen-
sitivity to CBF, we also considered the use of an EOM to shape the laser pulse as shown in
Figs. 4(b), 4(d), and 5(b).

3.2 Time of Flight Distribution within Tissue

The tissue photon time of flight distribution functions, PðToFÞ, was obtained as described in
Sec. 2.1.3 for all time gates. PðToFÞ of a time gate gives the actual tissue ToF probability dis-
tribution for photons allocated to that time gate based on the overall TPSF. PðToFÞ does not
match the desired gating profile due to non-idealities in the system IRF. To understand the effect
of different IRFs on the apparent ToF distribution, we use the experimentally derived IRFs and a
“perfect” δ-function IRF at 765 nm to compare the actual tissue ToF at several time gates selected
from the overall TPSF. Figure 6 shows the comparison of PðToFÞs for the IRFs across four
different time gates with a fixed gate width of 300 ps. It can be seen from Fig. 6 that in the
later time gates, i.e., the time gates with start times of 600 and 900 ps, there is “leak-through”
of photons with shorter travel time within the tissue because of the IRF profile. For the VisIR-RE

Fig. 6 ToF distribution within tissue at different time gates with gate width of 300 ps for exper-
imental IRFs at 765 nm and the “perfect” δ function IRF. Legend: solid blue for VisIR-FG with
EOM, dotted blue for VisIR-FG, solid magenta for VisIR-RE with EOM, dotted magenta for
VisIR-RE, and green shade for the δ function IRF.

Fig. 5 IRFs [all measured except (a)] at 1064-nm excitation wavelengths: (a) Gaussian IRF,
(b) 1064-NW with EOM, and (c) 1064-NW.
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IRF, the number of early photons in fact ends up exceeding the number of photons that have a
tissue ToF falling within the desired time gate. Figure 6 also illustrates that shaping the laser
pulse to obtain a near Gaussian-shaped IRF with a narrow width and using a photodetector that
does not add a long diffusion tail to the IRF is needed to be able to effectively select photons with
longer ToFs in tissue at later gates.

3.3 Coherence Factor (β)

Figures 7 and 8 show the computed coherence factor, β, across various time gates for different
IRFs at 765- and 1064-nm excitation wavelengths, respectively. We observe that for every gate
start time, β decreases with increasing gate width for all IRFs. The use of MPD-RE as detector
leads to attaining lower values of β. This decrease starts at earlier time gates compared to when
the MPD-FG was used due to the mixing of less coherent photons with an excessively different
ToF which resulted from the poor ToF gating effectiveness shown in the previous section.

3.4 Intrinsic Sensitivity

The noise-less intrinsic sensitivity across the time gates for different IRFs at the two wavelengths
is shown in Figs. 9 and 10. Figures 9(d) and 9(e) show that using the MPD-RE detector, we
cannot achieve a BFi sensitivity to CBF that is more than 9% to 10%, for any of the time gates

Fig. 7 Variation of β across times gates for different IRFs at 765 nm: (a) Gaussian IRF, (b) VisIR-
FG with EOM, (c) VisIR-FG, (d) VisIR-RE with EOM, and (e) VisIR-RE.

Fig. 8 Variation of β across times gates for different IRFs at 1064 nm: (a) Gaussian IRF, (b) 1064-
NW with EOM, and (c) 1064-NW.
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due to the short path photon leak-through. Comparing Figs. 9(b) and 9(c), we can see that using
an EOM to shape the laser pulse helps in improving the sensitivity to CBF with the later time
gates. Figure 10 shows that a further improvement of sensitivity can be achieved with excitation
wavelength of 1064 nm due to higher penetration into the brain because of lower effective attenu-
ation coefficient compared to 765 nm (Table 1). For instance, at 1064-nm excitation wavelength,
a Gaussian IRF of 300-ps FWHM (and 1064-NW with EOM IRF) can make it possible to
achieve a sensitivity as high as around 64% [Fig. 10(a)] with one of the later time gates. On
the other hand, with 765-nm excitation wavelength, a maximum sensitivity of around 54% can
only be attained with a Gaussian IRF of 300 ps FWHM (and VisIR-FG with EOM IRF).

3.5 Contrast-to-Noise Ratio

The obtained CNR across time gates for various IRFs have been shown in Figs. 11 and 12 for
excitation wavelengths of 765 and 1064 nm, respectively. For all the IRFs at 765 nm, we observe
that the CNR decreases at the late time gates, unlike the intrinsic sensitivity. We find that at
765 nm, the experimental IRF with the highest CNRs is VisIR-FG with EOM. For this IRF,
we find that the upper 20% of CNR values are found for time gates starting at 300 ps with gate
widths of 500 ps and above. For 1064 nm, for the best performing experimentally measured IRF,
i.e., 1064-NW with EOM, we find that the region of time gates with highest CNR is now at gate
start times from 500 to 600 ps and with gate widths of 300 ps and above. For the synthetic
Gaussian IRF at 1064 nm, the optimal gate start time occurs approximately 100 ps later.

Fig. 9 Intrinsic sensitivities across time gates for different IRFs at 765 nm: (a) Gaussian IRF,
(b) VisIR-FG with EOM, (c) VisIR-FG, (d) VisIR-RE with EOM, and (e) VisIR-RE.

Fig. 10 Intrinsic sensitivities across time gates for different IRFs at 1064 nm: (a) Gaussian IRF,
(b) 1064-NW with EOM, and (c) 1064-NW.
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3.6 Sensitivity to Change in Extracerebral Hemodynamics

The sensitivity of BFi to change of blood flow in the extracerebral layer for different IRFs across
various time gates at 765 and 1064 nm are shown in Figs. 13 and 14, respectively. Here, we find
that the later gates are useful in reducing the influence of extra-CBF variation for all the IRFs,
except the VisIR-RE and the VisIR-RE with EOM. While comparing the sensitivities of the
Gaussian IRFs across wavelengths [Figs. 13(a) and 14(a)], we observe a slight improvement
at 1064 nm in terms of being less sensitive to a perturbation in extra-CBF at the later time gates.

3.7 Figure of Merit

Figures 15 and 16 show our final metric for comparing the performance across various time
gates, the FoM that combines the influence of intrinsic sensitivity, noise, and extracerebral cross-
talk potential for 765 and 1064 nm, respectively. We find that the best-performing hardware-
based IRF at 765 nm corresponds to the VisIR-FG with EOM configuration based on the FoM
metric. We find that the upper 20% of FoM values occur for time gates with gate start times
between 300 and 400 ps after the TPSF peak and with a width of 500 ps and larger at 765 nm. For
1064 nm, for the best-performing hardware-based IRF, 1064-NW with EOM, the time gates start
from 500 to 600 ps with gate width of 500 ps and larger.

Fig. 12 CNR across time gates for different IRFs at 1064 nm: (a) Gaussian IRF, (b) 1064-NW with
EOM, and (c) 1064-NW.

Fig. 11 CNR across time gates for different IRFs at 765 nm: (a) Gaussian IRF, (b) VisIR-FG with
EOM, (c) VisIR-FG, (d) VisIR-RE with EOM, and (e) VisIR-RE.
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Fig. 14 Sensitivity to change in extracerebral across time gates for different IRFs at 1064 nm:
(a) Gaussian IRF, (b) 1064-NW with EOM, and (c) 1064-NW.

Fig. 15 FoM across time gates for different IRFs at 765 nm: (a) Gaussian IRF, (b) VisIR-FG with
EOM, (c) VisIR-FG, (d) VisIR-RE with EOM, and (e) VisIR-RE.

Fig. 13 Sensitivity to change in extracerebral across time gates for different IRFs at 765 nm:
(a) Gaussian IRF, (b) VisIR-FG with EOM, (c) VisIR-FG, (d) VisIR-RE with EOM, and
(e) VisIR-RE.
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3.8 Comparison with Thicker Extracerebral Layer

To study the effect of extracerebral thickness on the optimal range of time gates, we have
repeated our analysis on a human head geometry with extracerebral thickness increased by
3 mm. Figure 17 shows the comparison of the obtained FoM across the time gates at
1064 nm wavelength with the best-performing experiment-based IRF, 1064-NW with EOM.
We see that the distribution of FoM values across the gate start and width matrix is very similar
between the two scenarios. As expected, we notice the absolute performance values being sig-
nificantly reduced for the thicker extracerebral layer scenario.

3.9 Experimental Verification of β and the Noise Level

To verify the simulated TD-DCS operating conditions are realistic, we compared β and the CoV,
defined as the ratio of the standard deviation to the mean, of the recovered BFi time-series
between simulations and liquid phantom experiments (here, reflecting Brownian diffusion)
across the time gate matrix. For these simulations, we used a semi-infinite geometry with the
same optical properties as the phantom and matching photon counts as seen in the experiment.
Figure 18(a) shows the comparison of the obtained β from simulations and liquid phantom mea-
surements. In Fig. 18(b), we compare the obtained BFi CoVs from simulations and liquid phan-
tom measurements.

4 Discussions

From the simulations, we found that the overall TD-DCS performance is heavily dependent on
the characteristics of the laser source and photodetector. Hence, we began by comparing the
performance across the time gates for a number of Gaussian shaped IRFs of varying width
(shown in the Supplementary Material). From this exploration, we learned that ∼300 ps

Fig. 17 Comparison of FoM across various time gates for 1064-NW with EOM IRF at 1064 nm
on human head model with (a) thicker extracerebral layer and (b) usual extracerebral layer.

Fig. 16 FoM across time gates for different IRFs at 1064 nm: (a) Gaussian IRF, (b) 1064-NW with
EOM, and (c) 1064-NW.
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FWHM Gaussian IRF provides the best performance from the point of view of achieving the
highest FoM values. We used this as a realistic reference (as opposed to a δ-function IRF used by
previous work31) for comparing the performance and optimal time gates for hardware-driven
IRFs and to provide a target for optimizing actual instrument IRFs using electro-optical laser
shaping. The determination of the “ideal” IRF is important for choosing the proper source and
detector combination for TD-DCS measurements. For instance, as also mentioned in our pre-
vious publication,30 while the custom silicon, enhanced red sensitivity MPD-RE detector has a
quantum efficiency over 40% at 765 nm, the slow impulse response decay due to charge dif-
fusion delays in the substrate prevents the efficient long path photon selection. Moreover, as seen
in Figs. 9(d) and 9(e) and due to the broad system IRF achieved when using this detector, none of
the time gates yield more than 10% sensitivity to brain blood flow, superficial cross-talk remains
substantial even at late gates [see Figs. 13(d) and 13(e)], and the mixing of early and late photons
leads to decreased coherence [manifested as low β, see Figs. 7(d) and 7(e)], significantly reduc-
ing achievable SNR. On the other hand, the use of a detector with sharp temporal response, such
as the MPD Fast Gated detector, leads to significantly improved performance in photon selec-
tion. However, the limited quantum efficiency (as low as 5% to 7% at 765 nm) requires the use of
a distributed source to ensure enough photons are detected while remaining under the regulatory
exposure limits.

Another experimental parameter with significant impact on the optimal gating strategy is the
temporal shape of the pulsed laser source. TD-DCS requires a delicate balancing act—using a
pulse long enough to have several cm of coherence length, yet short enough to enable PðToFÞ
selectivity. The few hundred ps regime that meets these requirements is an area sparsely covered
by commercial sources, if at all. The Picoquant VisIR-STED that our group used in implement-
ing TD-DCS comes quite close, though the native pulse is longer than optimal. By shortening the
pulse using an EOM [as displayed in Figs. 4(b) and 4(d)], we have shown that we can noticeably
improve the intrinsic sensitivity at the later gates. Comparing the PðToFÞs in Fig. 6 between
IRFs: VisIR-FG (in dotted blue) and VisIR-FG with EOM (in solid blue), we find that shaping
the laser pulse helps in rejecting the early photons at the late gates [Figs. 6(c) and 6(d)]. Not only
does this help in having better sensitivity to CBF at the later time gates but also this may improve
β by minimizing the probability of mixing early photons with the later ones as seen in Fig. 6. It is
also important to note that shortening of the laser pulse also leads to the reduction of laser coher-
ence length—the pulse length needs to remain long enough to avoid losses due to reduced coher-
ence length overcoming the benefits from better photon ToF selectivity.

We find that with almost all the IRFs (except those involving the MPD-RE detector), the
intrinsic sensitivities (Figs. 9 and 10) increase monotonically with increasing gate start times.
However, this metric cannot be solely used for determining the optimal time gates for measuring
CBF using TD-DCS because it does not consider the effects of noise. When the CNR is con-
sidered instead, the late time gates do not offer the best performance (Fig. 11)—while the intrin-
sic sensitivity increases approximately linearly with gate start time, the noise impact grows

Fig. 18 Comparison of (a) β and (b) CoV across various time gates from the measurements (dot-
ted lines) and the corresponding gates from the simulations (solid lines).
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rapidly. Figure 11 also shows that wider time gates are also beneficial—this is likely because the
increase photon count leads to a reduction in noise that is more powerful than any associated
decrease in β. For the best-performing IRF at 765 nm, the 300-ps FWHM VisIR-FG with EOM,
the time gates with gate start times varying from 300 to 400 ps and widths of 500 ps and above
correspond to the both the highest CNR and FoM. At 1064 nm, where a higher photon count is
available, this range shifts to later time gates, having gate start times ranging from 500 to 600 ps
and gate widths of 500 ps and higher for the best-performing measured IRF, 1064-NW with
EOM, at that wavelength [Figs. 12(b) and 16(b)]. This shift of the high CNR/FoM region to
the later time gates at 1064 nm indicates 1064-nm measurements can effectively exploit higher
CBF sensitivity. Moreover, the results at 1064 nm show a 4 to 5 times improvement in FoM
versus 765 nm when the 300-ps FWHM 1064-NW with EOM IRF is used. The β and the CNR/
FoM of the Gaussian IRF look slightly better than the shaped IRF of the corresponding wave-
length because the laser coherence length was around 4.6 cm for the former and 4 cm for the
latter.

The optimization of gate settings for TD-DCS has been previously reported using a simpli-
fied approach that did not consider system IRF or statistical correlation noise models. Qiu et al.31

reports optimal gate starts of 700 to 800 ps with respect to the start of the TPSF—corresponding
to gate starts of 560 to 660 ps with respect to the TPSF peak—and a gate width of 800 ps at
850 nm using a δ-function IRF (which is not achievable in practice). These gate opening times
are quite different from our results (optimal gate start delays of 300 to 400 ps) at 765-nm wave-
length in case of the best practically achievable IRF (VisIR-FG with EOM). The most likely
reason for the disagreement of our gate opening times with the ones in Qiu et al.31 is that
we have considered a real IRF as opposed an ideal one. Moreover, in our work, we have esti-
mated the systemic noise to the measurements using a stochastic noise model, and we have also
considered the effect of finite coherence length. Another reason for the difference in results is
that we used a 1-s integration time in our simulations as opposed to an integration time of 5 s that
was used in Qiu et al.31 A higher integration time will shift the optimal CNR to somewhat later
gates but would be less suited for following fast CBF events.

The overall absolute FoM values across time gates dropped for the larger extracerebral thick-
ness, as shown in Fig. 17(a). However, we notice that the optimal time gate for the head model
with thicker extracerebral layer occurs at the same time as the baseline scenario, which implies
that the optimal time gate can be largely chosen regardless of the subject characteristics. We also
verified that the optimal time gates do not change if the probe is moved to another position
(∼3 cm away) on the forehead. However, as expected, the absolute magnitude of the perfor-
mance metrics does change depending on the thickness of the extracerebral later in the probed
region on the forehead.

To ensure our simulations are reflective of experimental realities, we have compared βs and
BFi CoVs, obtained from a measurement on a liquid phantom with those recovered from sim-
ulations with parameters matching the measurement conditions. As shown in Fig. 18(a), we
found that the βs across different time gates obtained from the simulations are a reasonably good
match for those obtained from measurements. We observed that the βs from the measurement
decay little faster than the computed ones as we move the gate opening times away than from the
peak of the TPSF. In both the cases, they reach a steady state value. Figure 18(b) shows that the
CoVs across different time gates obtained from the simulations are a good match for those
obtained from measurements.

5 Conclusion

We used Monte Carlo simulations on a realistic human head geometry to determine the time
gate(s) for optimal performance of TD-DCS with commercially available laser sources and pho-
ton counting detectors at 765- and 1064-nm wavelengths. For the first time, we have quantified
the IRF (driven by source and detector characteristics) influence on the performance of TD-DCS
measurements using simulations representative of experimental conditions. We further show that
electro-optical IRF shaping can lead to results close to an ideal Gaussian IRF. Once the IRF has
been optimized, the choice of time gates balances increasing sensitivity with increasing noise at
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later gate starts, allowing a preferred gating strategy to be defined. Somewhat counterintuitively,
wider gates are beneficial due to their positive impact on detected photon counts despite lower
coherence. The optimal time gate(s) were determined for both wavelengths based on the key
factors that affect the effectiveness of CBF monitoring using TD-DCS. The close agreement
between simulation parameters and those obtained from a measurement on a liquid phantom
confirms that the optimal time gates obtained through our simulation method can be used for
optimizing TD-DCS monitoring of CBF on patients.
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